SUPPORTING INFORMATION

Synthesis of Nitrate Ester and Nitramine Derivatives of Polyfluoro Alkyl Compounds for High Energy Materials

Dharavath Srinivas*[a,b], Vikas D. Ghule*[c]

^[a] Advanced Centre of Research in High Energy Materials (ACRHEM), University of

Hyderabad, Hyderabad-500 046, India. E-mail: <u>dharavathsrinivas@gmail.com</u>

^[b] Current address: Department of Chemistry, University of Idaho, Moscow, Idaho 83844-

2343, United States.

^[c] Department of Chemistry, National Institute of Technology, Kurukshetra-136 119, Haryana, India. E-mail: gvd@nitkkr.ac.in

1. Spectral data

Sr. No.	Compound
1	2,2,2-Trifluoroethyl carbamate (1)
	a. ¹ HNMR, b. ¹³ CNMR
2	2,2,2-Trifluoroethyl nitrocarbamate (2)
	a. ¹ HNMR, b. ¹³ CNMR
3	2,2,3,3-Tetrafluorobutane-1,4-diyl dicarbamate (3)
	a. ¹ HNMR, b. ¹³ CNMR
4	2,2,3,3-Tetrafluorobutane-1,4-diyl bis(nitrocarbamate) (4)
	a. ¹ HNMR, b. ¹³ CNMR
5	2,2,3,3-Tetrafluorobutane-1,4-diyl dinitrate (5)
	a. ¹ HNMR, b. ¹³ CNMR
6	2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diyl dicarbamate (6)
	a. ¹ HNMR, b. ¹³ CNMR
7	2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diyl bis(nitrocarbamate) (7)
	a. ¹ HNMR, b. ¹³ CNMR
8	2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diyl dinitrate (8)
	a. ¹ HNMR, b. ¹³ CNMR

1. 2,2,2-trifluoroethyl carbamate (1)

a. ¹H NMR

2. 2,2,2-Trifluoroethyl nitrocarbamate (2)

a. ¹H NMR

3. 2,2,3,3-Tetrafluorobutane-1,4-diyl dicarbamate (3)

a. ¹H NMR

b. ¹³C NMR

4. 2,2,3,3-Tetrafluorobutane-1,4-diyl bis(nitrocarbamate) (4)

a. ¹H NMR

b. ¹³C NMR.

5. 2,2,3,3-Tetrafluorobutane-1,4-diyl dinitrate (5)

a. ¹H NMR

6. 2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diyl dicarbamate (6) a. ¹H NMR

200 180 160 140 120 100 80 60 40 20 0 ppm

7. 2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diyl bis(nitrocarbamate) (7) a. ¹H NMR

8. 2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diyl dinitrate (8) a. ¹H NMR

b. ¹³C NMR

2. Theoretical calculations

All quantum chemical calculations were performed using the Gaussian G09 program package.¹ The geometries of all the compounds were fully optimized at the DFT (B3PW91) level with 6-31G(d,p) basis set and characterized to be true local energy minima on the potential energy surface and no imaginary frequencies were found. Isodesmic reactions were used to compute the heats of formation and presented in Figure S1. The usage of the gas phase HOF (HOF_{gas}) in the calculation of detonation properties slightly overestimates the values of detonation velocity and detonation pressure, and hence, the solid phase HOF (HOF_{solid}) can efficiently reduce the errors. The HOF_{solid} is calculated as the difference between HOF_{gas} and heat of sublimation (HOF_{sub}) as,

$$HOF_{solid} = HOF_{gas} - HOF_{sub}$$
(1)

The heat of sublimation (HOF_{Sub}), which is required to convert the HOF_{Gas} to the solid state (HOF_{Solid}), was calculated from Equation (2),²

$$HOF_{sub} = 4.4307 \ x \ 10^{-4} A^2 + 2.0599 \left(\nu \sigma_{tot}^2 \right)^{0.5} - 2.4825 \tag{2}$$

where A represent the surface area of the 0.001 electrons/bohr³ isosurface of electronic density, *v* denotes the degree of balance between the positive and negative surface potentials, and σ_{tot}^2 is the electrostatic potential variance. These molecular surface properties were obtained using the Multiwfn program.³

Scheme S1. Isodesmic reactions for compounds 2, 4, 5, 7 and 8.

3. Crystallographic data

Figure 1. Molecular structure of Compound 4.

Bond lengths (Å)									
Parameter	Value	Parameter	Values	Parameter	Value				
F1C9	1.353(3)	C5-N7	1.377(4)	N6O10	1.204(4)				
O2–C5	1.333(3)	C5–O4	1.186(4)	С9–С9	1.530(5)				
O2–C1	1.434(3)	N6-N7	1.389(3)	С9-С1	1.501(4)				
F3C9	1.350(3)	N608	1.203(4)						
Bond angles (°)									
С5О2С1	114.6(2)	O8-N6-O10	126.6(3)	F3-C9-F1	106.0(3)				
O2-C5-N7	106.0(2)	O10-N6-N7	114.2(3)	F3C9C9	107.7(3)				
O4–C5–O2	126.0(3)	C5-N7-N6	123.4(3)	F3C9C1	110.4(2)				
O4C5N7	127.9(2)	F1C9C9	107.2(3)	С1-С9-С9	114.6(3)				
O8-N6-N7	119.2(3)	F1C9C1	110.5(2)	O2–C1–C9	105.3(2)				

Figure 2. Crystal packing diagram for compound 7.

Table 2.	Calastad	h a m d	1 ~~~ ~+ 1. ~	and l	ار میں ما	am al a a	fam	+1. a (_	harred b	7
Table 2.	Selected	bonu	lenguis	anu	bona	angles	101	ule	Comp	ouna	1.

Bond lengths (Å)									
Parameter	Value	Parameter	Values	Parameter	Value				
F1-C11	1.339(2)	F5C9	1.344(3)	C9–C14	1.507(3)				
F2-C11	1.341(2)	F6C9	1.346(2)	N10-O12	1.200(3)				
O3–C8	1.182(3)	N7–C8	1.390(3)	N10-O13	1.198(3)				
O4–C8	1.342(2)	N7-N10	1.377(3)	C11–C11	1.550(4)				
O4–C14	1.430(2)	C9–C11	1.557(3)						
Bond angles (°)									
C8O4C14	114.19(17)	F5-C9-C14	110.72(18)	F1C11F2	108.72(15)				
N10-N7-C8	123.28(17)	F6C9C11	108.08(17)	F1C11C9	107.58(15)				
03–C8–O4	125.63(19)	F6C9C14	110.56(18)	F1C11C11	108.58(18)				
O3–C8–N7	128.45(18)	C14–C9–C11	111.83(16)	F2C11C9	106.75(16)				
O4-C8-N7	105.88(16)	O12-N10-N7	114.5(2)	F2C11C11	108.97(18)				
F5-C9-F6	105.94(18)	O13-N10-N7	119.1(2)	C11–C11–C9	116.04(19)				
F5-C9-C11	109.51(16)	O13-N10-O12	126.4(2)	O4C14C9	104.68(17)				

Figure 3. Molecular structure of Compound 8.

			_		-	~ ~		
Table 2.	Salaatad	handl	anothe o	nd hand	analaa	forthe	Com	ound Q
I able 5.	Selected	DOHUT	enguis a	ша ропа	angles		t Comi	ouna o.

Bond lengths (Å)									
Parameter	Value	Parameter	Values	Parameter	Value				
F1-C8	1.350(4)	O5–N9	1.204(4)	C8-C10	1.517(4)				
F2-C11	1.342(4)	O6–N9	1.350(3)	C8C11	1.543(4)				
F3-C11	1.333(4)	O6-C10	1.427(4)	C11–C11	1.554(5)				
F4C8	1.342(4)	O7–N9	1.326(4)						
Bond angles (°)									
N9-O6-C10	116.2(2)	C10–C8–C11	112.8(3)	F2C11C11	108.6(3)				
F1C8C10	109.5(2)	O5–N9–O6	122.7(3)	F3C11F2	108.2(3)				
F1-C8-C11	108.4(2)	O5–N9–O7	127.0(3)	F3C11C8	107.1(2)				
F4-C8-F1	106.1(3)	O7–N9–O6	110.2(3)	F3-C11-C11	108.8(3)				
F4C8C10	111.0(3)	O6C10C8	103.5(3)	C8C11C11	115.9(3)				
F4C8C11	108.8(2)	F2C11C8	107.9(2)						

Compound 4: CCDC structure deposit information CCDC 1437815

Summary of Data CCDC 1437815

Compound Name: Formula: C6 H6 F4 N4 O8 Unit Cell Parameters: a 11.4164(17) b 13.6481(9) c 4.9679(8) P21/n

Compound 7: CCDC structure deposit information

CCDC 1428609

Summary of Data CCDC 1428609

Compound Name: Formula: C8 H6 F8 N4 O8 Unit Cell Parameters: a 4.99141(16) b 20.7151(8) c 7.2618(2) P21/c

Compound 8: CCDC structure deposit information

CCDC 1424012

Summary of Data CCDC 1424012

Compound Name: Formula: C6 H4 F8 N2 O6 Unit Cell Parameters: a 5.1438(5) b 6.2912(9) c 9.9448(12) P-1

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. V. Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, A. L. G. Liu, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al- Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, Revision D. 01*, Gaussian, Inc., Wallingford, CT, **2004**.

- 2. P. Politzer, Y. Ma, P. Lane, M. C. Concha, Int. J. Quant. Chem. 2005, 105, 341-347.
- 3. T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.