Electronic Supplementary Information

Nanostructured molybdenum phosphide/N, P dual-doped carbon

nanotube composite as electrocatalysts for hydrogen evolution

Yang Zhao^{a,c}, Shuo Wang^a, Chunyan Li^a, Xianbo Yu^a, Chunling Zhu^b, Xitian Zhang, ^c

Yujin Chen*^{a,}

^aKey Laboratory of In-Fiber Integrated Optics, Ministry of Education, and College of Science, Harbin Engineering University, Harbin 150001, China. Fax: 86-451-82519754; Tel: 86-451-82519754; E-mail: chenyujin@hrbeu.edu.cn ^bCollege of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China. E-mail: chunlingzhu@hrbeu.edu.cn ^cKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Figure S1. ADF STEM image and the corresponding EDX elemental scanning mappings of MoP/N,P–CNTs.

Figure S2. SEM image of P-PANI.

Figure S3 XPS spectra of P-PANI.

Table S1. The content of various elements in MoP/N,P–CNTs

MoP/N,P-CNTs	С	N	0	Р	Мо
at. %					
XPS data	46.97	3.02	35.88	10.41	3.72
EDX data	58.87	3.85	23.06	10.77	3.45

Figure S4. a) Nitrogen adsorption and desorption isotherms and b) the pore size distribution curve of MoP/N,P–CNTs.

Figure S5. Nitrogen adsorption and desorption isotherms of MoO₂/N,P–CNTs.

Figure S6. Nitrogen adsorption and desorption isotherms of bulk MoP.

Figure S7. Nitrogen adsorption and desorption isotherms of P-PANI.

Figure S8. a) Nyquist plots and the equivalent circuit and b) The plots of overpotential vs. lg R_{ct}^{-1} for MoP/N,P–CNT and its linear fitting for data obtained in 0.5 M H₂SO₄.

Catalysts	Tafel slope (mV dec ⁻¹)	j₀ (μA cm⁻²)	η ₁ (mV)	η ₅ (mV)	η ₁₀ (mV)	J ₂₀₀ (mA cm ⁻²⁾	Refs.
FeP nanosheets	67	—	—	180	~240	6	3
МоР	60	4.15	~145	~200	246	~5	10
MoP-CA2	54	86	—	~105	125	100	13
MoP nanosheets	56.4	—	~100	~176	200	10	14
oxygen- incorporated MoS ₂	55	12.6	_	~148	~170	19	17
MoS ₂ /Mo ₂ C- NCNTs	69	21	145	—	~190	15	19
Bulk MoS ₂	120	—	87	—	260	3	19
MoS₂ nanoflowers	113	—	76	—	195	17	19
MoS₂ nanosheets	43	_	—	~175	`195	~25	21
Mo ₂ C/CNTGR	58	62	~62	~116	130	—	23
Mo ₂ N/CNTGR	72	39.4	~118	—	186	~15	23
Mo₂C/CNT	63	_	~120	_	190	~13	23
Cu₃P NW/CF	67	180	79				41

Table S2. Comparison of HER performance in acidic media of MoP/N,P–CNTs w	vith
other HER electrocatalysts	

MoN/C	54.5	36	250		—	0.7	42
NiMoN _x /C	35.9	240	~148	—	—	3.5	42
Mo ₂ C/GCSs	62.6	12.5	~120	—	200	10	43
МоВ	55	1.4	—	195	~211	~5.4	44
Mo ₂ C	56	1.3	~150	190	~208	~6.5	44
double-gyroid MoS ₂ /FTO	50	0.69	>150	~205	~230	~4.5	45
Co@NC/NG	79.3	—	—	150	~190	~14	46
FeS ₂	56.4	0.144	217	—	N/A	1	47
CoS ₂	52.0	3.53	128	173	192	—	47
NiS ₂	48.8	0.0191	230	_	N/A	1	47
MoP/N, P-CNTs	51	60	63	100	116	360	This work

Note: η_1 , η_5 and η_{10} denote overpotentials driving current densities of 1, 5 and 10 mA cm⁻², respectively. J_{200} denote the current density at an overpotential of 200 mV.

Table S3. Comparison of HER performance in alkaline media of MoP/N,P–CNTs with other HER electrocatalysts.

Catalysts	Tafel slope (mV dec ⁻¹)	j ₀ (μA cm ⁻²)	η ₁ (mV)	η ₁₀ (mV)	J ₂₀₀ (mA cm ⁻²)	Refs.
CoP/CC ^a	129	_	115	209	~24	9
MoP clusters	48	46	—	~132.5	_	12
МоВ	59	2.0	~158	~216	~5.8	44
Mo₂C	54	3.8	~105	~171	—	44
MoP/N, P- CNTs	58	100	62	117	135	This work

Note: η_1 , η_{10} and η_{10} denote overpotentials driving current densities of 1, 5 and 10 mA cm⁻², respectively. J_{200} denote the current density at an overpotential of 200 mV.

Figure S9. a) Polarization curves of MoP/N,P–CNTs in phosphate buffer and b) stability of MoP/N,P–CNTs at a given overpotential of 600 mV in phosphate buffer.

Figure S10. Cyclic voltammograms for MoP/N,P–CNTs a) and for b) bulk MoP in phosphate buffer, and c) TOF versus overpotential curves of MoP/N,P–CNTs and bulk MoP in 0.5 M H_2SO_4 .

Figure S11. XRD pattern of the post-HER electrode after continuous water electrolysis at given overpotential of 150 mV for 12 h in 0.5 M H_2SO_4 .

Figure S12. TEM images of MoP/N,P–CNTs scraped off from the post-HER electrode. a) Low-resolution TEM image and b) high-resolution TEM image, and the inset in a) shows the corresponding SAED pattern.

Table S4. Comparison the double layer capacitance (C_{dl}) in acidic media of MoP/N,P–CNTs with other HER electrocatalysts

Catalysts	C _{dl} (mF cm ⁻²)	Refs.
P-WN/rGO	32	34

WN/rGO	11	34
Cu₃P NW/CF	77.8	41
Cu₃P MP/CF	4.1	41
Co@NC/NG	37.3	46
FeS ₂	3.59	47
CoS₂	3.62	47
NiS ₂	1.20	47
atomically-thin MoN nanosheets	1.56	49
bulk MoN	0.53	49
MoP/N, P-CNTs	91	This work

Figure S13. Nyquist plots and the equivalent circuit of the bulk MoP at various HER overpotentials in 0.5 M $\rm H_2SO_{4.}$

Table S5. Comparison of charge-transfer resistances between bulk MoP and

MoP/N,P-CNTs at different overpotentials

$\eta_i(\mathrm{mV})$ $R_{\mathrm{ct}} (\Omega \mathrm{cm}^{-2})$	100	150	200	250
Bulk MoP	175.5	36.7	7.3	3.2
MoP/N,P-CNTs	32.1	4.8	0.5	0.4

Figure S14. XRD patterns of MoP-1 and MoP-2.

Figure S15. SEM images of MoP-1 (a) and MoP-2 (b).

Figure S16. TEM image of MoP-2.

Figure S17. a) Polarization curves and b) Tafel plots of MoP/N,P–CNTs, MoP-1 and MoP-2 in 0.5 M H_2SO_4 solution.

Figure S18 a) Polarization curves and b) Tafel plots of MoP/N,P–CNTs, MoP-1 and MoP-2 in 1.0 M KOH solution.

Figure S19 Cyclic voltammograms for (a) MoP-1 and (c) MoP-2 in the region of 0.3–0.4 V vs. RHE in 0.5M H₂SO₄; The differences in current density ($\Delta J = J_a - J_c$) for (b) MoP-1 and (d) MoP-2 at 0.35 V vs. RHE plotted against scan rate fitted to a linear regression allows for the estimation of C_{dl}.