Supplementary Information

Study of temperature dependent three components dynamic covalent assembly via Hantzsch reaction catalyzed by dioxido- and oxidoperoxidomolybdenum(VI) complexes under solvent free condition

M.R. Maurya, N. Saini and F. Avecilla

Table S1 Details of the weight loss of methanol and the formation of MoO_3 in complexes andtheir corresponding decomposition temperature range

Compound	% MeOH		% MoO ₃			
	Temp. range [°C]	Calc.	Obs.	Temp. [°C]	Calc.	Obs.
[Mo ^{VI} O ₂ (ap-bhz)(MeOH)] 1	110-220	6.5	6.4	550	29.1	28.9
[Mo ^{VI} O ₂ (ap-inh)(MeOH)] 2	147-210	6.5	6.3	510	29.1	28.6
[Mo ^{VI} O ₂ (ap-nah)(MeOH)] 3	125-200	6.5	6.4	530	29.1	28.7
[Mo ^{VI} O ₂ (ap-fah)(MeOH)] 4	141-215	6.6	6.6	540	29.8	28.6
$[Mo^{VI}O(O_2)(ap-bhz)(MeOH)]$ 5	132-225	6.3	6.4	528	28.2	27.6
$[Mo^{VI}O(O_2)(ap-inh)(MeOH)] 6$	149-220	9.4	9.5	516	28.2	27.9
[Mo ^{VI} O(O ₂)(ap-nah)(MeOH)] 7	122-190	6.3	6.7	531	28.2	27.3
[Mo ^{VI} O(O ₂)(ap-fah)(MeOH)] 8	129-215	9.6	9.8	537	28.8	28.1

 Table S2 Crystal Data and Structure Refinement for the complex [Mo^{VI}O₂(ap-bhz)(DMSO)]

 1a

1a (CCDC 1436144)			
C ₂₁ H ₂₂ Mo N ₄ O ₅ S			
538.43			
296(2)			
0.71073			
Monoclinic			
C2/c			
26.895(4)			
8.4616(10)			
21.724(3)			
110.874(8)			
4619.3(10)			
8			

F ₀₀₀	2192
$D_{\text{calc}}/\text{g cm}^{-3}$	1.548
μ /mm ⁻¹	0.698
$ heta\!$	1.62 to 28.31
R _{int}	0.0996
Crystal size/ mm ³	$0.21{\times}\ 0.17{\times}\ 0.14$
Goodness-of-fit on F ²	0.971
$R_1[I \ge 2\sigma(I)]^a$	0.0571
wR_2 (all data) ^b	0.1694
Largest differences peak and hole (eÅ-3)	0.408 and -0.422

${}^{a}\mathbf{R}_{1} = \Sigma \left| \left| \mathbf{F}_{o} \right| - \left| \mathbf{F}_{c} \right| \right| / \Sigma \left| \mathbf{F}_{o} \right| . {}^{b}w\mathbf{R}_{2} = \left\{ \Sigma [w(\left| \left| \mathbf{F}_{o} \right|^{2} - \left| \mathbf{F}_{c} \right|^{2} \right|)^{2}] \right| / \Sigma [w(\mathbf{F}_{o}^{2})^{2}] \right\}^{1/2}$

Table S3 Bond lengths and angles for the compound [Mo ^{VI} O ₂ (ap-bhz)(DMSO)] 1a

Bond lengths	1 a
Mo(1)-O(1)	1.690(4)
Mo(1)-O(2)	1.684(4)
Mo(1)-O(3)	1.970(4)
Mo(1)-O(4)	1.963(4)
Mo(1)-N(3)	2.273(5)
Mo(1)-O(5)	2.304(4)
N(1)-C(1)	1.337(7)
N(1)-N(2)	1.417(7)
N(1)-C(14)	1.429(7)
N(2)-C(3)	1.341(7)
Angles	1a
O(1)-Mo(1)-O(2)	105.3(2)
O(1)-Mo(1)-O(3)	95.21(19)
O(2)-Mo(1)-O(3)	98.67(19)
O(1)-Mo(1)-O(4)	102.87(18)
O(2)-Mo(1)-O(4)	97.09(19)
O(3)-Mo(1)-O(4)	151.90(19)
O(1)-Mo(1)-N(3)	159.51(18)
O(2)-Mo(1)-N(3)	92.46(18)
O(3)-Mo(1)-N(3)	71.66(19)
O(4)-Mo(1)-N(3)	84.58(18)
O(1)-Mo(1)-O(5)	87.63(17)
O(2)-Mo(1)-O(5)	167.04(17)
O(3)-Mo(1)-O(5)	80.61(16)
O(4)-Mo(1)-O(5)	78.86(16)
N(3)-Mo(1)-O(5)	74.97(14)

Fig. S1 ORTEP plot of complex [Mo^{VI}O₂(ap-bhz)(DMSO)] **1a**. All the non-hydrogen atoms are presented by their 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Fig. S2 Intermolecular π - π interactions in 1a. Dashed lines link the centres of the π clouds involving in each interaction.

Fig. S3 Intermolecular π - π interactions in 1b. Dashed lines link the centres of the π clouds involving in each interaction.

Fig. S4 Intermolecular π - π interactions in 3a. Dashed lines link the centres of the π clouds involving in each interaction.

Fig. S5 Intermolecular π - π interactions in 5. Dashed lines link the centres of the π clouds involving in each interaction.

Fig. S6 Intermolecular π - π interactions in 7a. Dashed lines link the centres of the π clouds involving in each interaction.

Fig. S7 UV-vis spectra of H₂ap-bhz I (conc. 3.9×10^{-4} M), H₂ap-inh II (conc. 3.4×10^{-4} M), H₂ap-nah III (conc. 3.0×10^{-4} M) and H₂ap-fah IV (conc. 3.6×10^{-4} M) recorded in methanol solution.

Fig. S8 UV-vis spectra of four dioxidomolybdenum(VI) complexes, **1**(conc. 2.0×10^{-4} M), **2** (conc. 2.5×10^{-4} M), **3** (conc. 3.3×10^{-4} M) and **4** (conc. 2.7×10^{-4} M) recorded in methanol.

Fig. S9 UV-vis spectra of four oxidoperoxidomolybdenum(VI) complexes, 5 (conc. 3.1×10^{-4} M), 6 (conc. $(2.2 \times 10^{-4} \text{ M})$, 7 (conc. $2.3 \times 10^{-4} \text{ M}$) and 8 (conc $3.5 \times 10^{-4} \text{M}$) recorded in methanol.

Fig. S10 (a) GC-MS chromatogram of Step-1 (Hantzsch reaction mechanism) depicting three prominent peaks at retention time 3.65, 5.75 and 8.82 min, corresponding to methylacetoacetate, benzaldehyde and methyl-2-benzylidene-3-oxobutanoate respectively.

Fig. S10 (b) GC-MS chromatogram of methyl-2-benzylidene-3-oxobutanoate (Intermediate-I)

Fig. S11 GC-MS chromatogram of methyl-3-aminobut-2-enoate (Intermediate-II)