Supporting Information

Efficient and facile synthesis of fused benzimidaz-ole-diazepinones and dibenzimidazole-diazepines via a UDC strategy and the hydroamination of an alkyne \dagger
Shi-Qiang Li, ${ }^{[a] \S}$ Hongyan Gao, ${ }^{[b] \S}$ Jie Lei, ${ }^{[a]}$ Jun Wang, ${ }^{[a]}$ Jia Xu ${ }^{[a]}$ Zhong-Zhu Chen*[a] and Zhi-Gang Xu* ${ }^{*[a]}$
${ }^{a}$ International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, China 402160.
${ }^{b}$ Department of Medical Administration, General Hospital of Beijing Military Command, China 100700
${ }^{\S}$ These authors contributed equally to this work.

Table of Contents Page
General Experimental... S2
Experimental Sections... S3

NMR Characterization Data and Figures of Products.................................... S4-S25

General Experimental

All reagents were purchased from commercial suppliers and used without purification unless otherwise stated. Column chromatography was performed with silica gel (300-400 mesh) produced by Qingdao Marine Chemical Factory, Qingdao (China). HPLC-MS analyses were performed on a Shimadzu-2020 LC-MS instrument using th e following conditions: Shim-pack VP-ODS C18 column (reverse phase, $150 \times 2.0 \mathrm{~m}$ $\mathrm{m}) ; 20 \%$ acetonitrile and 80% water over 6.0 min ; flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$. NMR spectra were recorded on Bruker AVANCE III 400 MHz instrument with TMS as internal standard.

Experimental Sections

General procedures for compounds 12 and 17.
A solution of benzaldehyde (0.50 mmol), benzylamine (0.50 mmol), propiolic acid (0.50 mmol), 2-(N-Boc-amino)-phenyl-isocyanide (0.50 mmol) was stirred overnight in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at room temperature. The reaction mixture was monitored by TLC. When no isonitrile was left, the solvent was removed under nitrogen blowing and the crude residue was dissolved in $10 \% \mathrm{TFA} / \mathrm{DCE}(3.0 \mathrm{~mL})$ and treated in microwave at $160^{\circ} \mathrm{C}$ for 30 min . After the microwave vial was cooled to room temperature, the solvent was removed under reduced pressure and then diluted with EtOAc (15 mL) and washed with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (20-100\%) to afford the relative targeted product $\mathbf{1 2}$.

Benzaldehyde (0.50 mmol), N-Boc-protected-phenylenediamine (0.50 mmol), propiolic acid (0.50 mmol), 2-(N-Boc-amino)-phenyl-isocyanide $(0.50 \mathrm{mmol}$) were mixed and stirred overnight in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at room temperature. The reaction mixture was monitored by TLC. When no isonitrile was left, the solvent was removed under nitrogen blowing and the crude residue was dissolved in 10\%TFA/DCE (3.0 mL) and treated in microwave at $160^{\circ} \mathrm{C}$ for 30 min . After the microwave vial was cooled to room temperature, the solvent was removed under reduced pressure and then diluted with EtOAc (15.0 mL) and washed with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (20-100\%) to afford the relative targeted product 17.

NMR Characterization Data and Figures of Products

Compound 7 light yellow solid, yield 82%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{q}, J=4.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (q, $J=6.8 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 3 \mathrm{H}$), $6.90(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}$, $1 \mathrm{H}), 5.82(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.5,151.7,141.4,135.9,134.8,133.3,129.0,128.9$, $128.6,128.18,128.1,125.5,124.8,124.5,124.3,120.5,115.2,109.8,59.4,53.5$. LC-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 366$; found 366 .

Compound 12a yellow solid, yield 69%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.41(\mathrm{dt}, J=6.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.32$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (dd, $J=6.5 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.6,1 \mathrm{H})$, $7.06-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.78 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.9,151.6,141.9,135.0$, 133.4, 133.1, 130.6, 129.6, 128.8, 128.1, 127.7, 125.5, 124.7, 124.3, 123.9, 120.7, 114.4, 109.7, 109.6, 59.8, 53.4. LC-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 444$; Found 444.

Compound 12b white solid, yield 66%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $6.96(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.45$, $159.48,151.84,142.13,135.18,133.49,130.39,128.55,128.10,127.94,125.50$, $124.57,124.38,124.18,120.69,114.85,114.29,109.66,59.46,55.23,52.90$. LC-MS calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 396$; found 396.

Compound 12c white solid, yield 74%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{t}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H}$,$) ,$ 7.19-7.06 (m, 5H), 7.04-6.96 (m, 2 H$), 6.94(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.87$ (, $\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.2,151.9,141.7,137.9,135.2,133.3$, 128.8, 128.7, 128.4, 128.2, 126.5, 125.5, 124.7, 124.4, 124.2, 120.4, 115.2, 109.7, 60.7, 52.7, 34.4. LC-MS calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 380$; found 380 .

Compound 12d white solid, yield 64\%. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{dt}, J=4.3 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 3 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 3 \mathrm{H})$, 7.15-7.03 (m, 5H), $6.97(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H})$, 5.89 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=8.5 \mathrm{~Hz}$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.1,154.8,151.2$, 137.7, 134.4, 133.3, 132.7, 129.4, 129.1, 128.8, 128.4, 126.8, 126.6, 125.3, 124.9, 124.2, 119.9, 115.7, 109.9, 59.7, 52.9, 34.2. LC-MS calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}, 414$; found 414.

Compound 12e light yellow solid, yield 67%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $7.20(, \mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.53(\mathrm{~m}, 1 \mathrm{H})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.1,150.6,141.8,135.6,135.3,133.4,133.1$, $132.81,132.5,130.4,129.1,129.1,128.5,127.6,125.0,124.8,124.7,120.8,114.7$, 109.8, 58.7, 53.4. LC-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 434$; found 434.

Compound 12f white solid, yield 63%. ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=24.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ $(\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 164.9,159.8,150.7,141.2,135.3,133.2,132.5,130.5,127.6,127.6$, $125.2,125.0,124.7,124.5,120.5,115.3,114.5,109.9,58.1,55.3,52.8$. LC-MS calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 464$; found 464 .

Compound 12g white solid, yield 68%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13-7.03(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}),, 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H})$, $5.91(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.46(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.13-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.86(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.8,150.6,140.7,137.5,135.3,133.5,132.8$, 130.7, 128.7, 128.4, 127.5, 126.6, 125.4, 124.9, 124.8, 124.2, 120.3, 115.5, 109.9, 59.6, 52.9, 34.2. LC-MS calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 484$; found 484.

Compound 12h white solid, yield 66%. ${ }^{1} \mathrm{H}$ NMR (400
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 3 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=9.8$ $\mathrm{Hz}, \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.86(, \mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.03(\mathrm{~m}, 1 \mathrm{H})$, 2.97-2.84 (m, 1 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,159.4,151.9,141.2$, 137.8, 133.1, 128.8, 128.4, 126.7, 126.7, 126.4, 124.7, 124.4, 123.9, 120.3, 115.3, 114.1, 109.7, 60.2, 55.2, 52.7, 34.4. LC-MS calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$,

410; found 410.

Compound 12i white solid, yield 73%. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.21(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,150.4,141.3,135.2,134.6,133.3$, 133.2, 133.1, 132.6, 131.2, 130.6, 130.0, 128.0, 127.5, 125.1, 124.8, 124.7, 124.0, 120.6, 114.5, 109.8, 77.3, 76.7, 76.7, 58.4, 52.9. LC-MS calculated for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{BrCl}_{2} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 512$; found 512.

Compound 17a white solid, yield 58%. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.99-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.36(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=10.9 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.5,147.6,142.1,140.4,134.2$, $129.7,129.6,129.3,128.3,126.3,125.1,124.8,124.5,120.8,119.2,114.4,114.2$, 109.9, 106.2, 57.3. LC-MS calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 349$; found 349.

Compound 17b white solid, yield 61%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.46$ (m, 6H), 7.41 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.56 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.9,147.2,142.0,139.6$, $135.2,134.1,133.8,132.5,129.5,126.6,125.6,125.5,125.4,125.3,124.8,120.9$, 119.0, 110.0, 109.7, 105.6, 56.8. LC-MS calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 383$; found 383 .

Compound 17c white solid, yield 62%. ${ }^{1}$ H NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=6.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.06,147.72$, $142.63,141.87,134.93,134.58,134.19,133.59,133.32,131.02,127.40,125.28$, 124.90 , 124.65, 124.57, 124.34, 123.61, 120.80, 120.18, 110.00, 109.26, 108.02, 56.02. LC-MS calculated for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 417$; found 417 .

Compound 17d white solid, yield 65%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H})$, $7.45-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=10.5 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.53$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7,149.4,148.2$, $143.2,142.2,135.1,134.3,126.9,126.5,124.7,124.3,124.2,123.7,123.2,120.7$, 120.1, 114.2, 109.8, 109.3, 108.3, 56.6, 55.2. LC-MS calculated for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}, 379$; found 379 .

Compound 17e white solid, yield 56%. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H})$, 7.38 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.44 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.1,142.3,135.8,135.4$, 134.2, 133.9, 132.2, 129.2, 129.0, 125.5, 125.3, 125.1, 124.6, 120.9, 118.1, 109.9, 104.7, 57.5, 20.8, 20.3. LC-MS calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 377$; found 377 .

Compound 17f white solid, yield 67%. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}$, $3 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 159.8,149.0,142.3,134.9,134.5,133.9,133.0,126.7,126.5,124.9,124.3$, $123.9, \quad 120.8, \quad 119.1, \quad 114.4, \quad 109.7, \quad 106.7, \quad 55.9, \quad 55.3, \quad 20.8, \quad 20.3$. LC-MS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 407$; found 407 .

Figure $1 .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 7 .

$\stackrel{\infty}{\infty}$

Figure 2. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 a}$.

\cdots	
$\stackrel{4}{6}$	

Figure $3 .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 b}$.
 ヘNNNNNNNNNNN0.00006400 $\iiint \int_{\int}$ 111
$\stackrel{\text { N }}{\substack{\pi \\ j \\ j}}$ $\stackrel{N}{i}$

 ~웅

Figure 4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 c}$.

Figure $5 .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 d}$.
 $\iint 11$

[^0]Figure $6 .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 e}$.

Figure 7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 f}$.

Figure $8 .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 g}$.

Figure 9. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 h}$.

Figure $10 .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2 i}$.

-165.43
 $\stackrel{(}{\infty} \stackrel{\infty}{\infty}$

Figure 11．${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 a}$ ．

$$
\begin{aligned}
& \text { NスNNNNNNNNNNNNNNNNNNNO日もO }
\end{aligned}
$$

$\stackrel{0}{i}$

Figure 12. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 b}$.

Figure 13. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 c}$.

Figure $14 .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 d}$.

Figure 15. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 e}$.

Figure 16. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 f}$.

[^0]:

