Supplementary Information for

MoSe₂ Nanosheets Grown on Carbon Cloth with Superior Electrochemical Performance as Flexible Electrode for Sodium Ion Batteries

Yi Zhang[†], Zhengqing Liu[†], Hongyang Zhao and Yaping Du*

Frontier Institute of Science and Technology jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 99 Yanxiang Road, Yanta District, Xi'an Shaanxi Province 710054, China, E-mail: ypdu2013@mail.xjtu.edu.cn.

† These authors contributed equally to this work.

Experimental Section:

Synthesis of MoSe₂/CF and pure MoSe₂ samples: A typical procedure is described as follows: a given amount of $(NH_4)_2MoO_4$ (0.5 mmol) and selenium powder (1.0 mmol) was added in 18 mL mixture of oleic acid and ethanol (volume ratio=1:1) in an 20 mL Teflon-lined autoclave. A piece of carbon cloth (1 cm × 1 cm) was then put into the autoclave. The autoclave was sealed and heated at 180 °C for 72 h in an oven, and then cooled down to room temperature. The products were collected and washed several times with ethanol. To remove the organic residue and excess selenium powder, the as-prepared products were annealed in Ar/H₂ (95%:5%) at 300 °C for 2 h. Other MoSe₂/CF samples have also prepared in different conditions (Table 1). Pure MoSe₂ was also prepared under the same condition without carbon cloth.

Electrochemical Measurements for Sodium Ion Battery: The electrochemical test of MoSe₂/CF were carried out using CR2032 coin-type cells, consisting of a MoSe₂/CF electrode and sodium metal anode separated by a glass fiber. The MoSe₂/CF were

used as anode electrodes directly and the weight of $MoSe_2$ were calculated by using the weight of $MoSe_2/CF$ to minus the weight of carbon cloth. The electrode of pure $MoSe_2$ was prepared by milling a mixture of 70wt% active materials, 20wt% acetylene black and 10wt% poly(vinyl difluoride) (PVDF) in N-methylpyrrolidinone (NMP) to from a homogeneous slurry. The slurry of the mixture was pasted uniformly on a Cu foil current collector and the electrode was then dried under vacuum at 110 °C for 12 h before cell assembly. The cells were assembled in a glove box filled with dried argon gas. The electrolyte was a mixture of ethylene carbonate and dimethyl carbonate 1:1 (w/w) containing 1 M NaClO₄ and 5 wt% flouroethylene carbonate additive.

To investigate electrochemical performance, cyclic voltammetry (CV) and charge/discharge measurements were carried out on a CHI660D electrochemistry workstation and Land Battery Measurement System at room temperature. The electrochemical performance was conducted at various current densities in the voltage range of 0-3 V. Cyclic voltammetry (CV) studies were carried out between 0 and 3 V at scans rate of 0.2 mV s^{-1} .

Characterizations: TEM images were acquired by a Hitachi HT-7700 transmission electron microscope (TEM, Japan) operating at 100 kV. High-resolution TEM (HRTEM) micrographs were obtained with a Philips Tecnai F20 FEG-TEM (The USA) operated at 200 kV. Samples for TEM analysis were prepared by drying a drop of cyclohexane solution containing the nanomaterials on the surface of a carbon-coated copper grid. The XRD patterns were obtained using a Rigaku D/MAX-RB with monochromatized Cu K α radiation (λ =1.5418 Å) in the 20

ranging from 10° to 80°. X-ray photoelectron spectra (XPS) were conducted using a PHI Quantera SXM instrument equipped with an Al X-ray excitation source (1486.6 eV). Binding energies (BEs) are referenced to the C 1s of carbon contaminants at 284.6 eV. The electrochemical performances of samples were carried out on a CHI660D electrochemistry workstation and Land Battery Measurement System at room temperature.

Fig. S1 XPS of the MoSe₂/CF sample.

Fig. S2 SEM and TEM images of the pure MoSe₂ sample.

Fig. S3 Charge/discharge curve and cycling stability of CF sample.

Fig. S4 Electrochemical performance of the pure MoSe₂ sample.

Fig. S5 Rate ability and cycling stability of MoSe₂/CF and pure MoSe₂.

Fig. S6 SEM images of $MoSe_2/CF$ sample after 100 cycles at 0.2 A g⁻¹.

(NH4)2M0O4	Se powder	Carbon cloth	MoSe ₂ /CF	Loading mass of MoSe ₂	Morphology
0.25 mmol	0.5 mmol	12.3 mg	14.2 mg	1.9 mg	Sample 1
0.5 mmol	1mmol	12.2 mg	14.8 mg	2.6 mg	Sample 2
1mmol	2mmol	12.3 mg	15.3 mg	3.0 mg	Sample 3

Table 1 The morphology of MoSe₂/CF prepared by different conditions.