Supporting information

Phototransformation of Tetrazoline oxime ethers: Photoisomerization vs photodegradation

Maxime Fréneau,^{a,b} Pascal de Sainte Claire^{a,c}, Norbert Hoffmann,^b Jean-Pierre Vors,^d Julie Geist,^d Michel Euvrard,^d Claire Richard,*^{a,e}

^a Equipe Photochimie CNRS, UMR 6296, ICCF, F-63178 Aubière, France.

^b CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France

^c Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France.

^d Bayer S.A.S, 14 Impasse Pierre Baizet, 69263 Lyon, France

^e Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand,

BP 10448, F-63000 CLERMONT-FERRAND, FRANCE

1. Irradiations

1.1 Emission spectrum of polychromatic tubes

Figure SI-1: Emission spectrum of polychromatic tubes

1.2 Polychromatic quantum yields

Polychromatic quantum yields were obtained using the following expression,

$$\Phi = \frac{R_{1-Z}}{R_{Ia}} \tag{eq.1}$$

where R_{I-Z} is the rate of photolysis of **1-Z**, R_{Ia} is the rate of light absorption,

$$R_{Ia} = \sum_{280}^{350} (1 - 10^{-A_{\lambda}}) I_{\lambda} l^{-1} \Delta \lambda \qquad (eq.2)$$

In equation 2, A_{λ} is the absorption of the sample and I_{λ} is the photon fluence rate at wavelength λ at the front face of the reactor, as measured with an Ocean Optics spectroradiometer. $\Delta\lambda$ was set at 5 nm and A_{λ} and I_{λ} were averaged within the 5-nm wavelength ranges. l is the averaged path length. R_{Ia} was found to be 2.25x10⁻⁶ Einstein/L/s.

2. Formation and identification of 1-E2.1 UPLC analysis of irradiated 1-Z at very low conversion extent

Figure SI-2: Evolution of the chromatogram of 1-Z during its polychromatic irradiation in acetonitrile. a) Only the Z isomer is present initially. b) After 60 s, 1-E is the only photoproduct

2.2 HPLC-MS of 1-E

The HPLC-MS data below confirmed that 1-Z and 1-E show the same m/z.

Figure SI-3: HPLC-MS data of a mixture of **1-Z** (retention time 2.01 min) and **1-E** (retention time 1.98 min) obtained after irradiation of **1-Z**.

2.3 UV spectra of 1-Z and 1-E

Figure SI-4: UV spectra of isomers **1-Z** (**a**) and **1-E** (**b**). Comparison of spectra obtained by HPLC (dotted line) with those obtained by conventional UV spectrophotometry (solid line) for **1-Z** and after subtraction for **1-E**.

Figure SI-5: Theoretical absorption spectra of 1-Z and 1-E

3. Irradiation of 1-Z in polychromatic light

Figure SI-6: Consumption profile of 1-Z (\square) and formation profile of 1-E (Δ), and degradation photoproducts (\circ) upon polychromatic irradiation. The irreversible photodegradation is obtained by subtracting the amounts of 1-Z and 1-E from the initial concentration of 1-Z. Solid lines were obtained by the fitting procedure.

4. Irradiation of 2-Z in polychromatic light

Figure SI-7: Consumption profile of 2-Z (\square) and formation profile of 2-E (\triangle), and degradation photoproducts (**o**) upon polychromatic irradiation. The irreversible photodegradation is obtained by subtracting the amounts of 2-Z and 2-E from the initial concentration of 1-Z. Solid lines were obtained by the fitting procedure.

5. UV spectra of 4 and 5

Figure SI-8: UV spectra of 4 and 5 in acidic water -acetonitrile mixture (55:45, v/v)

6. Calculation of the electronic absorption spectra of species 4 and 6

Time-Dependent Density Functional Theory (TD-DFT) calculations were performed at the B3LYP/6-31(d,p) level to obtain the electronic absorption spectra of species **4** and **6**. These are shown below in the most stable conformation.

The theoretical UV absorption spectra are shown below. This Figure shows that both species 4 and 6 absorb in the same regions at ~230 nm and ~280 nm. However, the carbonyl species 4 is a stronger UV absorbant (x3) than the imine 6 at 280 nm.

Figure SI-9: Theoretical absorption spectra of 4 (solid line) and 6 (dotted line)

Figure SI-10: Changes of the absorption spectrum of an irradiated solution of **1-Z** upon acidification. Solid line: pure acetonitrile; dashed line: addition of pure water; dotted line: addition of acidified water with orthophosphoric acid (0.1%)

6. Data on 3-Z and 3-E

6.1 Photoisomerization of 3-Z into 3-E

Figure SI-11: Concentrations evolution of isomers **3-Z** and **3-E** during the polychromatic irradiation of **3-Z**. After establishment of the photostationary state, [3-E]/[3-Z] = 6.2.

6.2 Absorption spectra of 3-Z and 3-E

Figure SI-12: Experimental absorption spectra of isomers **3-Z** (solid line) and **3-E** (dotted line), determined by spectrum subtraction.

7. MS data on 7 and 8

Figure SI-13: MS data of 7 (a) and 8 (b)

Figure SI-14: Experimental UV spectra of 7 (solid line) and 8 (dotted line)

Figure SI-15: Theoretical UV spectra of 8 (dotted line) and M8 (solid line)

8. Phototransformation of 4 in polychromatic irradiation

Figure SI-16: Concentration profile of **4** (\bigcirc) during its polychromatic irradiation. Only one photoproduct (\bullet) is detected by HPLC.

Figure SI-17: MS data of photoproduct **9** in ES⁻, m/z=173.

9. Phototransformation of M8 in polychromatic irradiation

Figure SI-18: Absorbance evolution of a solution of **M8** in acetonitrile during its polychromatic irradiation. Irradiation times: 0, 5, 10, 15, 25, 40, 60 min