Supporting Information

Chemo- and regioselective head-to-tail heterodimerization of vinylarenes with 1,1-diphenylethene over heterogeneous catalyst (Snβ zeolite)

Mameda Naresh,^{a,b} Peraka Swamy,^{a,b} Kodumuri Srujana,^a Chevella Durgaiah,^a Marri Mahender Reddy,^a Aytam Hari Padmasri ^c and Nama Narender^{a,b*}

Table of Contents

1. Optim	nization study for the head-to-tail heterodimerization o	of styrene with 1,1
dipher	nylethene	
i)	Solvent variation	
ii)	Catalyst amount variation	
2. Chara	cterization of zeolites	
3. Spectr	roscopic data of all products	S6-S9
4. Copies	s of ¹ H and ¹³ C NMR spectra of all products	S10-S20
5. Notes	and references	

^a Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

^b I&PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India Tel.: +91–40-27191703; Fax: +91-40-27160387/27160757; E-mail: narendern33@yahoo.co.in; nama@iict.res.in

^c Department of Chemistry, University College for Women, Osmania University, Koti, Hyderabad 500095, Telangana, India.

1. Optimization study for the head-to-tail heterodimerization of styrene with 1,1diphenylethene

i) Solvent variation

The influence of solvent was studied under similar reaction conditions and the results are described in Table S1. Several solvents have been investigated and results revealed that the reaction was proceeded in chlorinated solvents and toluene (Table S1). The best results were obtained when 1,2-dichloroethane (DCE) was used as a solvent among others in terms of reaction yield (Table S1, entry 5).

Table S1 The head-to-tail heterodimerization of styrene with 1,1-diphenylethene over Sn β zeolite-effect of solvent^{*a,b*}

	$R' \sim f_{Ph} = R' \sim Ph' Ph' Ph' Ph' Ph' Ph' Ph' Ph' Ph' Ph'$				
	1a	2a 3a	4a		
Entry	Solvent	Temperature (° C)	Conversion	3a Yield	4aYield
			of 1a	(%)	(%)
1	Toluene	110	60	49	10
2	CCl_4	80	55	45	9
3	CHCl ₃	80	40	30	8
4	CH_2Cl_2	40	16	10	3
5	DCE	80	99	90	9
6	DMF	100	00	-	-
7	DMA	100	00	-	-
8	DMSO	100	00	-	-
9	DME	100	00	-	-
10	ACN	70	00	-	-
11	1,4 Dioxane	100	00	-	-
12	THF	60	00	-	-
13	MeOH	60	00	-	-
14	EtOH	80	00	-	-
15	H ₂ O	100	15	10	3

a Reaction conditions: **1a** (2 mmol), **2a** (2.5 mmol), 10% Sn β (100 mg), solvent (1 mL), 100 °C, 15 h, sealed vial. ^b Conversion of **1a** was based on GC. ^c Isolated yields.

ii) Catalyst amount variation

Once 10% Sn β catalyst was found as the best catalyst for the head-to-tail heterodimerization of styrene with 1,1-diphenylethene, the influence of a catalyst amount was also studied. By varying the catalyst amount from 25 to 100 mg, a gradual improvement in yield (53 to 90%) was observed and any further increase of amount did not have accountable effect on the yield (Table

S2, entries 1-6) and it was found that 100 mg of catalyst has shown the best results (Table S2, entry 4).

R	+ Catalyst	R Ph + Ph	Ph	
1a	2a	3a 4	4a	
Entry	10% Snβ (mg)	Conversion 1a	3a Yield (%)	4a Yield
		(%)		(%)
1	25	70	53	15
2	50	86	73	13
3	75	90	78	14
4	100	99	90	9
5	150	99	91	8
6	200	99	90	7

Table S2. The head-to-tail heterodimerization of styrene with 1,1-diphenylethene over Sn β zeolite-effect of amount of catalyst ^{*a,b*}

a Reaction conditions: **1a** (2 mmol), **2a** (2.5 mmol), 1,2-dichloroethane (DCE) (1 mL), 100 °C, 15 h, sealed vial. ^b Conversion of **1a** was based on GC. ^c Isolated yields.

2. 1. Surface area and pore size distributions of catalysts

The surface properties of catalyst samples were measured by N_2 adsorption at -196 °C, in an Autosorb 3000 physical adsorption apparatus. The specific surface areas were calculated by applying the BET method.

Catalyst samples were characterized for surface area and pore size distribution and the results are given in Table S3. However, there is no direct correlation between pore size and /or pore volume against catalytic activity.

Entry	Catalyst	$S_{BET}\left(m^2g^{1}\right)$	Pore size (nm)	Pore volume (cc/g)
1	NaY	606	0.32	0.32
2	HY	486	2.75	0.35
3	HMCM-41	1282	3.68	1.82
4	HZSM-5 (40)	339	3.87	0.32
5	Montmorillonite K10	177	5.43	0.24
6	H-Mordenite	333	3.33	0.21
7	Нβ	587	2.28	0.33
8	Snβ	488	2.20	031

Table S3. Surface area and pore size distributions of the catalysts.

2.2. XPS Study

The XPS pattern was recorded using a Kratos Axis Ultra Imaging X-ray photoelectron spectrometer, equipped with Mg anode and a multichannel detector. Charge referencing was done against adventitious carbon (C 1s, 284.8 eV). A Shirley-type background was subtracted from the signals. The recorded spectra were fitted using Gauss–Lorentz curves to determine the binding energies of the different elements.

XPS is also adopted to determine the oxidation states of Sn. As observed in Fig. S1, the Sn 3d shows the regular doublet with peaks at 486.9 and 495.3 eV. The XPS study suggest that Sn⁴⁺ species are present on the catalyst, which is in good agreement with literature data.³

Fig. S1. XPS spectra of SnO₂.

Catalyst	Acidity ^a	Acidic sites distribution ^b		
	(mmol/g)	LT-peak ^c N	AT-peak ^c	HT-peak ^c
Ηβ	0.47	25.4	74.6	-
10% Crβ	1.04	55.4	41.5	3.1
10% Coβ	1.73	10.0	32.9	57.1
10% Crβ	1.31	14.5	45.8	39.7
10%Feβ	1.59	12.5	51.5	36.0
10%Μοβ	1.40	38.5	27.8	33.7
10%Niβ	1.66	20.9	64.9	14.2
10%Wβ	1.40	8.5	65.1	26.4

Table S4. Desorption of ammonia of $H\beta$ and modified beta zeolites at different acidic regions^{a,b,c}

^a Total acidity amount determined by NH₃-TPD. ^b The NH₃-TPD (%) distribution of acidic sites. ^c LT-peak represents weak acid sites (150-250 $^{\circ}$ C), MT-peak represents medium acid sites (250-550 $^{\circ}$ C) and HT-peak represents strong acid sites (550- 650 $^{\circ}$ C).

Spectroscopic data

1,1,3-Triphenyl-1-butene (3a)¹

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.34–7.18 (m, 15H), 6.23-6.20 (m, 1H), 3.62-3.58 (m, 1H), 1.39 (d, J = 6.8 Hz, 3H).¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 146.2, 142.4, 140.1, 134.2, 129.9, 128.5, 128.3, 128.1, 127.3, 127.1, 127.0, 126.9, 126.0, 39.3, 22.4.

1,1-Diphenyl-3-(3-tolyl)-1-butene (3c)

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.40-7.32 (m, 3 H), 7.24-7.15 (m, 8 H), 6.99-7.01 (m, 3 H), 6.22 (d, *J* = 10.38 Hz, 1 H), 3.60-3.50 (m, 1 H), 2.33 (s, 3 H), 1.37 (d, *J* = 6.79 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 146.1, 142.3, 140.0, 139.9, 137.9, 134.2, 129.8, 128.3, 128.2, 128.0, 127.6, 127.2, 127.0, 126.9, 126.7, 123.9, 39.2, 22.4, 21.5. HRMS (EI): *m/z* calculated for C₂₃H₂₂ [M]⁺ 298.17215, found: 298.172110.

3-(4-Tolyl)-1,1-diphenyl-1-butene (3d)¹

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.40-7.36 (m, 2 H), 7.33-7.30 (m, 1 H), 7.23-7.19 (m, 7 H), 7.11-7.10 (m, 4 H), 6.21-6.18 (m, 1 H), 3.59-3.53 (m, 1 H), 2.31 (s, 3 H), 1.36 (d, *J* = 6.86 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 143.1, 142.4, 140.1, 139.9, 135.4, 134.3, 129.8, 129.1, 128.2, 128.0, 127.2, 127.0, 126.9, 126.7, 38.8, 22.4, 21.0.

3-(2,4-Dimethylphenyl)-1,1-diphenyl-1-butene (3e)

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.37-7.29 (m, 3 H), 7.24-7.19 (m, 6 H), 7.15-7.13 (m, 2 H), 7.01 (d, 7.78 Hz, 1 H), 6.90 (s, 1 H), 6.22 (d, *J* = 10.07 Hz, 1 H), 3.74-3.68 (m, 1 H), 2.28 (s, 3 H), 2.28 (s, 3 H), 1.93 (s, 3 H), 1.35 (d, *J* = 6.86 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 142.5, 141.9, 140.2, 140.1, 135.1, 134.3, 131.1, 129.7, 128.0, 127.3, 126.9, 125.8, 35.0, 22.7, 20.9, 19.1. HRMS (EI): *m/z* calculated for C₂₄H₂₄ [M]⁺ 312.18780, found: 312.18750.

3-(4-*tert*-Butylphenyl)-1,1-diphenyl-1-butene (3f)

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.40-7.37 (m, 2 H), 7.34-7.30 (m, 3 H), 7.25-7.18 (m, 7 H), 7.15 (d, J = 8.24 Hz, 2 H), 6.20 (d, J = 10.37 Hz, 1 H), 3.60-3.54 (m, 1 H), 1.37 (d, J = 6.86 Hz, 3 H), 1.30 (s, 9 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 148.7, 142.9, 142.4, 140.1, 139.8, 134.4, 129.8, 128.2, 128.0, 127.2, 127.0, 126.9, 126.5, 125.3, 38.7, 34.3, 31.4, 22.1. HRMS (EI): m/z calculated for C₂₆H₂₈ [M]⁺ 340.21910, found: 340.21890.

3-(4-Fluorophenyl)-1,1-diphenyl-1-butene (3g)

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.39-7.30 (m, 3 H), 7.25-7.19 (m, 5 H), 7.12-7.17 (m, 4 H), 6.97-6.94 (m, 2 H), 6.16 (d, J = 10.37 Hz, 1 H), 3.60-3.54 (m, 1 H), 1.36 (d, J = 7.01 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 161.4, 142.2, 141.9, 140.4, 140.0, 133.8, 129.7, 128.3, 128.2, 128.1, 127.2, 127.1, 127.0, 115.3, 115.0, 38.6, 22.4. HRMS (EI): *m/z* calculated for C₂₂H₁₉F [M]⁺ 302.14708, found: 302.14690.

3-(4-Chlorophenyl)-1,1-diphenyl-1-butene (3h)¹

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.38 -7.10 (m, 14 H), 6.14 (d, J = 10.22 Hz, 1 H), 3.61-3.53 (m, 1 H), 1.36 (d, J = 6.86 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 144.7, 142.1, 140.6, 139.9, 133.4, 129.7, 128.5, 128.3, 128.2, 128.1, 127.2, 127.1, 127.1, 38.7, 22.3.

3-(4-Bromophenyl)-1,1-diphenyl-1-butene (3i)¹

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.42-7.31 (m, 5 H), 7.26-7.19 (m, 5 H), 7.16-7.14 (m, 2 H), 7.07-7.04 (m, 2 H), 6.14 (d, *J* = 10.37 Hz, 1 H), 3.58-3.51 (m, 1 H), 1.36 (d, *J* = 6.84 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 145.2, 142.1, 140.7, 139.9, 133.3, 131.5, 129.6, 128.7, 128.3, 128.1, 127.2, 127.1, 127.1, 38.8, 22.3.

1,3-Diphenylbut-1-ene (4a)²

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.37-7.34 (m, 2 H), 7.36-7.26 (m, 6 H), 7.22-7.17 (m, 2 H), 6.40-6.38 (m, 2 H), 3.66-3.61 (m, 1 H), 1.47 (d, *J* = 7.01 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 145.6, 137.5, 135.2, 128.5, 127.3, 127.0, 126.2, 126.1, 42.6, 21.2.

1,3-Di(4-fluorophenyl)but-1-ene (4d)²

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.31-7.28 (m, 2 H), 7.22-7.18 (m, 2 H), 7.02-6.94 (m, 4 H), 6.36-6.21 (m, 2 H), 3.64-3.57 (m, 1 H), 1.43 (d, *J* = 7.01 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 163.3, 162.6, 160.8, 160.2, 141.1, 134.7, 133.5, 128.6, 128.7, 127.6, 127.5, 115.4, 115.3, 115.2, 115.1, 41.8, 21.3.

1,3-Di(4-chlorophenyl)but-1-ene (4e)²

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.29-7.25 (m, 6 H), 7.18 (d, *J* = 8.39 Hz, 2 H), 6.35-6.26 (m, 2 H), 3.62-3.58 (m, 1 H), 1.43 (d, *J* = 7.01 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 143.7, 135.8, 135.3, 132.7, 132.0, 128.6, 127.7, 127.3, 41.9, 21.0.

1,3-Di(4-bromophenyl)but-1-ene (4f)²

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.43 (d, J = 8.39 Hz, 2 H), 7.40 (d, J = 8.54 Hz, 2 H), 7.20 (d, J = 8.54 Hz, 2 H), 7.13 (d, J = 8.39 Hz, 2 H), 6.31 (d, J = 2.89 Hz, 2 H), 3.61-3.56 (m, 1 H), 1.43 (d, J = 7.01 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 144.2, 136.2, 135.3, 131.6, 129.0, 127.8, 127.7, 120.9, 120.0, 42.0, 21.0.

Copies of ¹H and ¹³C NMR spectra:

Notes and references

1. J. Dai, J. Wu, G. Zhao and W. M. Dai, Chem. Eur. J., 2011, 17, 8290.

- 2. J. H. Choi, J. K. Kwon, T. V. Rajanbabu and H. J. Lim, *Adv. Synth. Catal.*, 2013, **355**, 3633.
- 3. H. J. Ahn, H. C. Choi, K. W. Park, S. B. Kim and Y. E. Sung, J. Phys. Chem. B, 2004, 108, 9815.