Journal Name

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

## FTIR metabolomic fingerprint reveals different modes of action exerted by active pharmaceutical ingredient based Ionic Liquids (API-ILs) on *Salmonella* Typhimurium

P. Mester,<sup>a</sup> A. K. Jehle,<sup>a</sup> C. Leeb,<sup>a</sup> R. Kalb,<sup>b</sup> T. Grunert<sup>c,†</sup> and P. Rossmanith<sup>a,†</sup>

## Supplement

 Table S1
 MICs of all 36 ILs against eight different Salmonella serovars.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

<sup>&</sup>lt;sup>a.</sup> Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna (Austria).

<sup>&</sup>lt;sup>b</sup> Proionic GmbH Parkring 18, 8074 Grambach (Austria).

<sup>&</sup>lt;sup>c</sup> Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna (Austria).

<sup>+</sup> These authors have contributed equally to this work.

|                                    | S. Тур       | ohimurium     | Δi           | invA        | ۵ <b>tt</b> | rC          | S. Bongori  |             |  |
|------------------------------------|--------------|---------------|--------------|-------------|-------------|-------------|-------------|-------------|--|
|                                    |              |               |              |             |             |             |             |             |  |
| IL cation                          | chloride     | nalidixate    | chloride     | nalidixate  | chloride    | nalidixate  | chloride    | nalidixate  |  |
| [C₁mim]*                           | > 1000       | 79.3 ± 27.5   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 23.8 ± 0.0  |  |
| [C <sub>2</sub> mim] <sup>*</sup>  | > 1000       | 91.3 ± 0.0    | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 60.8 ± 26.3 |  |
| [C₁C₁mim] <sup>+</sup>             | > 1000       | 38.4 ± 9.5    | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 21.9 ± 0.0  |  |
| [C₄mim]⁺                           | > 1000       | 98.4 ± 64.4   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 35.1 ± 12.2 |  |
| [C₅mim] <sup>*</sup>               | > 1000       | 94.8 ± 62.1   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 20.3 ± 0.0  |  |
| [C <sub>s</sub> mim] <sup>+</sup>  | > 1000       | 161.8 ± 124.3 | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 48.1 ± 35.6 |  |
| [TMC₁A] <sup>+</sup>               | > 1000       | 50.5 ± 32.5   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 23.2 ± 4.8  |  |
| [TMC₄A] <sup>+</sup>               | > 1000       | 87.7 ± 20.1   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 92.7 ± 61.1 |  |
| [TMC <sub>s</sub> A] <sup>+</sup>  | > 1000       | 50.0 ± 26.7   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 21.8 ± 3.4  |  |
| [TMC <sub>10</sub> A] <sup>+</sup> | > 1000       | 72.4 ± 62.7   | > 1000       | 579.2       | > 1000      | 579.2       | > 1000      | 30.2 ± 10.5 |  |
| [TMC <sub>12</sub> A] <sup>+</sup> | > 1000       | 74.4 ± 67.0   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 68.0 ± 88.3 |  |
| [TMC <sub>16</sub> A] <sup>+</sup> | 109.9 ± 14.1 | 14.7 ± 3.9    | 140.4 ± 70.1 | 87.1 ± 43.5 | 94.6 ± 25.2 | 87.1 ± 43.5 | 42.7 ± 10.6 | 13.3 ± 3.3  |  |
| [TC₄MA] <sup>+</sup>               | > 1000       | 40.0 ± 30.7   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 15.8 ± 3.9  |  |
| ITC <sub>8</sub> MA1 <sup>+</sup>  | 38.7 ± 0.0   | 34.7 ± 15.0   | 51.6 ± 22.3  | 52.1 ± 0.0  | 38.7 ± 0.0  | 52.1 ± 0.0  | 38.7 ± 0.0  | 26.0 ± 0.0  |  |
| [Emmor] <sup>+</sup>               | > 1000       | 104.5 ± 61.5  | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 30.6 ± 11.3 |  |
| [Empip] <sup>+</sup>               | > 1000       | 50.7 ± 33.2   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 43.5 ± 37.6 |  |
| [Bmpyr] <sup>*</sup>               | > 1000       | 177.5 ± 143.8 | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 34.1 ± 11.8 |  |
| [TC₄MP] <sup>+</sup>               | > 1000       | 87.1 ± 34.8   | > 1000       | > 1000      | > 1000      | > 1000      | > 1000      | 30.5 ± 8.7  |  |
| [TC <sub>8</sub> MP] <sup>+</sup>  | 37.1 ± 0.0   | 22.2 ± 5.5    | 37.1 ± 0.0   | 22.2 ± 5.5  | 37.1 ± 0.0  | 22.2 ± 5.5  | 37.1 ± 0.0  | 25.4 ± 0.0  |  |
| Na⁺                                | n. t.        | 38.9 ± 19.9   | n. t.        | > 1000      | n. t.       | > 1000      | n. t.       | 28.1 ± 9.7  |  |
|                                    | S. 4         | rizonae       | S.           | Indica      | S. Ho       | utenae      | S . Salamae |             |  |
|                                    |              |               |              | IL a        | nion        |             |             |             |  |

|                                    | chloride |            | IndifutXate |            | CIIIC  | chionue    |       | IndifutXate |        | chionae    |      | Hanuixate  |        | chionae    |      | nanuixate  |  |
|------------------------------------|----------|------------|-------------|------------|--------|------------|-------|-------------|--------|------------|------|------------|--------|------------|------|------------|--|
|                                    |          |            |             |            |        |            |       |             | > 1000 |            |      |            |        |            |      |            |  |
| [C₁mim] <sup>*</sup>               | > 1000   |            | 23.8        | $\pm$ 0.0  | > 1000 |            | 63.4  | ± 27.5      | > 1000 |            | 47.6 | $\pm 0.0$  | > 1000 |            | 31.7 | $\pm$ 13.7 |  |
| [C <sub>2</sub> mim] <sup>*</sup>  | > 1000   |            | 45.6        | $\pm$ 0.0  | > 1000 |            | 121.7 | ± 52.7      | > 1000 |            | 45.6 | $\pm 0.0$  | > 1000 |            | 30.4 | $\pm$ 13.2 |  |
| [C₁C₁mim]*                         | > 1000   |            | 21.9        | $\pm$ 0.0  | > 1000 |            | 96.8  | ± 74.4      | > 1000 |            | 67.6 | $\pm$ 34.8 | > 1000 |            | 21.9 | $\pm$ 0.0  |  |
| [C₄mim] <sup>*</sup>               | > 1000   |            | 35.1        | ± 12.2     | > 1000 |            | 112.5 | $\pm$ 48.7  | > 1000 |            | 98.4 | $\pm$ 64.4 | > 1000 |            | 42.2 | $\pm$ 36.5 |  |
| [C₅mim] <sup>*</sup>               | > 1000   |            | 20.3        | $\pm$ 0.0  | > 1000 |            | 81.3  | $\pm$ 0.0   | > 1000 |            | 54.2 | $\pm$ 23.5 | > 1000 |            | 33.9 | ± 11.7     |  |
| [C <sub>8</sub> mim]⁺              | > 1000   |            | 56.5        | ± 29.1     | > 1000 |            | 225.9 | ± 116.3     | > 1000 |            | 88.5 | ± 52.1     | > 1000 |            | 44.3 | $\pm$ 26.0 |  |
| [TMC₁A] <sup>*</sup>               | > 1000   |            | 26.4        | ± 17.4     | > 1000 |            | 59.2  | $\pm$ 30.2  | > 1000 |            | 42.4 | ± 17.6     | > 1000 |            | 26.4 | ± 17.4     |  |
| [TMC₄A]⁺                           | > 1000   |            | 85.7        | $\pm$ 68.0 | > 1000 |            | 140.5 | ± 46.3      | > 1000 |            | 74.5 | $\pm$ 30.9 | > 1000 |            | 48.5 | $\pm$ 31.2 |  |
| [TMC <sub>8</sub> A]⁺              | > 1000   |            | 31.5        | ± 10.3     | > 1000 |            | 62.9  | ± 20.5      | > 1000 |            | 62.9 | $\pm$ 20.5 | > 1000 |            | 83.5 | ± 101.0    |  |
| [TMC <sub>10</sub> A] <sup>⁺</sup> | > 1000   |            | 24.1        | $\pm$ 10.5 | > 1000 |            | 72.4  | $\pm$ 0.0   | > 1000 |            | 60.3 | $\pm$ 20.9 | > 1000 |            | 30.2 | $\pm$ 10.5 |  |
| [TMC <sub>12</sub> A] <sup>+</sup> | > 1000   |            | 68.0        | ± 88.3     | > 1000 |            | 102.0 | $\pm$ 58.9  | > 1000 |            | 79.3 | $\pm$ 78.5 | > 1000 |            | 68.0 | $\pm$ 88.3 |  |
| [TMC <sub>16</sub> A] <sup>+</sup> | 85.4     | ± 21.1     | 13.3        | $\pm$ 3.3  | 170.9  | $\pm$ 42.3 | 26.5  | ± 6.6       | 75.3   | $\pm$ 38.8 | 13.3 | $\pm$ 3.3  | 59.0   | $\pm$ 34.7 | 13.3 | $\pm$ 3.3  |  |
| [TC₄MA] <sup>*</sup>               | > 1000   |            | 15.8        | $\pm$ 3.9  | > 1000 |            | 63.4  | ± 15.7      | > 1000 |            | 55.8 | $\pm$ 28.7 | > 1000 |            | 15.8 | $\pm$ 3.9  |  |
| [TC <sub>8</sub> MA]⁺              | 64.4     | $\pm$ 22.3 | 26.0        | $\pm$ 0.0  | 64.4   | $\pm$ 22.3 | 26.0  | $\pm$ 0.0   | 51.6   | ± 22.3     | 26.0 | $\pm 0.0$  | 38.7   | $\pm 0.0$  | 34.7 | $\pm$ 15.0 |  |
| [Emmor]*                           | > 1000   |            | 37.8        | ± 10.8     | > 1000 |            | 75.7  | ± 18.7      | > 1000 |            | 75.7 | ± 18.7     | > 1000 |            | 37.8 | $\pm$ 22.9 |  |
| [Empip] <sup>*</sup>               | > 1000   |            | 29.0        | ± 12.5     | > 1000 |            | 72.4  | ± 25.1      | > 1000 |            | 43.5 | $\pm 0.0$  | > 1000 |            | 18.1 | $\pm$ 6.3  |  |
| [Bmpyr] <sup>*</sup>               | > 1000   |            | 27.3        | ± 11.8     | > 1000 |            | 54.6  | ± 23.6      | > 1000 |            | 54.6 | $\pm$ 23.6 | > 1000 |            | 17.1 | $\pm$ 5.9  |  |
| [TC₄MP] <sup>+</sup>               | > 1000   |            | 30.5        | ± 8.7      | > 1000 |            | 121.9 | ± 104.5     | > 1000 |            | 81.3 | ± 53.2     | > 1000 |            | 21.8 | ± 8.7      |  |
| [TC <sub>8</sub> MP]⁺              | 49.5     | ± 21.4     | 22.2        | ± 5.5      | 37.1   | ± 0.0      | 22.2  | ± 5.5       | 30.9   | ± 10.7     | 22.2 | ± 5.5      | 27.8   | ± 13.1     | 22.2 | $\pm$ 5.5  |  |
| Na⁺                                | n. t.    |            | 22.4        | ± 9.7      | n. t.  |            | 67.3  | $\pm$ 0.0   | n. t.  |            | 56.1 | ± 19.4     | n. t.  |            | 22.4 | ± 9.7      |  |
|                                    |          |            |             |            |        |            |       |             |        |            |      |            |        |            |      |            |  |

n.t.- not tested



**Fig. S1** FTIR spectroscopy-based dendrograms of *S*. Typhimurium after long-term treatments. The dendrograms show no cluster formation caused by the long-term treatments with the ionic liquids based on  $[TC_8MA]$ ,  $[TMC_{16}A]$  and  $[TMC_4A]$  and the controls, PBS and sodium nalidixate. No distinct effect is obvious in the region of fatty acids (**A**, **B**) or in the protein region (**C**, **D**), neither in *S*. Thyphimurium (**A**, **C**) or the naldixine insensitive mutant  $\Delta ttrC$  (**B**, **D**).



**Fig. S2** Clustering and concentration-dependent effects of  $[TC_8MA][C]$  and  $[TMC_{16}A][C]$  treatment on *S*. Typhimurium in the spectral region of proteins. (**A**, **C**) FTIR spectroscopy-based dendrogram of *S*. Typhimurium after short-term treatments with  $[TC_8MA][C] / [Nal]$  (**A**) and  $[TMC_{16}A][C] / Nal ($ **C**) with sodium nalidixate and PBS as controls show no cluster formation based on treatments with the ionic liquids. (**B**,**D**) FTIR spectra of*S* $. Typhimurium treated with three different concentrations of <math>[TC_8MA][Cl]$  (**B**) and  $[TMC_{16}A][Cl]$  (**D**) in the spectral range 1,800 to 1,500 cm<sup>-1</sup>, showing the concentration dependency of spectral changes.

Table S2 Reduction of S. Typhimurium CFUs after 1 hour exposure to ILs.

|                                   |            | Log reduc | tion of S. T | yphimurium | CFU after 1h | exposure to | o ILs |             |
|-----------------------------------|------------|-----------|--------------|------------|--------------|-------------|-------|-------------|
|                                   |            | 10000     | mg/L         | 20000      | mg/L         | 40000       | mg/L  |             |
| NaNal                             |            | n.t       | t.           | -0.66      | ±0.25        | -3.97       | ±1.72 |             |
| 17140 A1 <sup>+</sup>             | nalidixate | -1.21     | ±0.39        | -0.30      | ±0.24        | -0.66       | ±0.08 |             |
| [TMC <sub>4</sub> A]              | chloride   | 0.00      | ±0.04        | -0.04      | ±0.06        | -0.07       | ±0.08 |             |
|                                   |            | 25 mg/L   |              | 50 m       | ig/L         | 100 mg/L    |       | 200 mg/L    |
|                                   | nalidixate | n.t.      |              | -0.23      | ±0.04        | -0.94       | ±0.11 | -2.55 ±1.08 |
|                                   | chloride   | -0.14     | ±0.02        | -0.87      | ±0.32        | -2.42       | ±1.62 | n.t.        |
|                                   |            | 250 mg/L  |              | 500 mg/L   |              | 1000 (      | mg/L  |             |
| [TC <sub>8</sub> MA] <sup>+</sup> | chloride   | -1.87     | ±0.75        | -4.04      | ±1.61        | -6.94       | ±3.86 |             |
|                                   |            | 1250 mg/L |              | 2500 mg/L  |              | 5000        | mg/L  |             |
| [TC <sub>8</sub> MA] <sup>+</sup> | nalidixate | -4.17     | ±5.26        | -8.52      | ±2.96        | -6.81       | ±4.41 |             |

n.t.- not tested

Bold numbers indicate a > 3 log CFU reduction (99.9%)



**Fig. S3** FTIR spectroscopy-based analyses of *S*. Typhimurium after short-term treatments in the spectral range of proteins (1,800 to 1,500 cm<sup>-1</sup>). **(A)** The HCA of the protein region shows not clear cluster formation depending on the short-term treatment with ionic liquids based on the cations  $[TC_8MA]$ ,  $[TMC_{16}A]$  or  $[TMC_4A]$ . However, there is cluster formation correlating with higher viability of the cells (on the right, comprising PBS treated cells). **(B)** In the principal component analysis is no distinct effect obvious caused by the treatment with ionic liquids ( $[TC_8MA]$  (red),  $[TMC_{16}A]$  (blue) and  $[TMC_4A]$  (pink)), sodium nalidixate (green) or no treatment (PBS, black).