Supplementary Information

Amphiphobic Nanocellulose-modified Paper: Fabrication and Evaluation

Patchiya Phanthong¹, Guoqing Guan^{1, 2*}, Surachai Karnjanakom¹, Xiaogang Hao³,

Zhongde Wang³, Katsuki Kusakabe⁴, Abuliti Abudula^{1, 2}

¹Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-

8560, Japan

²North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan

³ Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024,

China

⁴ Department of Nanoscience, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082,

Japan

*Corresponding author. Tel.: +81-17-762-7756; Fax: +81-17-735-5411.

E-mail address: guan@hirosaki-u.ac.jp (G. Guan)

Table S-1 Contact a	ingles of	various	liquids	on	FOTS	treated	and	untreated	nanocellulo	se-
modified PTFE filter	papers.									

<u>Q</u>	Average contact angle (°)							
Sample	water	n-hexane	n-octane	n-hexadecane				
PTFE	44	0	0	0				
FOTS treated for 1 h	143	37	64	102				
FOTS treated for 5 h	147	36	55	100				
FOTS treated for 9 h	141	26	48	83				
0.01 wt% nanocellulose/PTFE	47	0	0	27				
FOTS treated for 1 h	135	15	0	94				
FOTS treated for 5 h	148	0	0	99				
FOTS treated for 9 h	134	50	61	104				
0.1 wt% nanocellulose/PTFE	52	0	0	20				
FOTS treated for 1 h	146	29	55	107				
FOTS treated for 5 h	153	26	43	92				
FOTS treated for 9 h	149	34	61	108				
0.5 wt% nanocellulose/PTFE	52	0	0	15				
FOTS treated for 1 h	151	33	56	108				
FOTS treated for 5 h	151	29	51	98				
FOTS treated for 9 h	142	36	59	100				

Table S-2 Contact angles of various liquids on FOTS treated 0.1wt% nanocellulose-modifiedPTFE filter paper.

Liquid	Average contact angle
	(°)
Seawater	148
Sodium chloride solution (5 wt%)	151
Distilled water (7 °C)	145
Distilled water (50 °C)	149
Sulfuric acid solution $(pH = 1)$	151
Sodium hydroxide solution ($pH = 14$)	142
Toluene	86
Ethylene glycol	121
Formamide	135
Vacuum pump oil	88

Fig.S-1 Liquid droplets on the amphiphobic surface of FOTS treated 0.1wt% nanocellulosemodified PTFE filter paper. A: water droplets in marble shape; B: water; C: n-hexadecane; D: noctane; E: n-hexane.

Fig.S-2 SEM images of A: PTFE filter paper ; B: 0.1wt% nanocellulose-modified PTFE filter paper; C: FOTS treated 0.1wt% nanocellulose-modified PTFE filter paper. Insets: contact angles of water and n-hexadecane.

Fig.S-3 SEM image of nanocellulose (A) and its FT-IR spectrum (B).

Fig.S-3 shows SEM image of nanocellulose used in this study (A) and FT-IR spectrum of it. The absorption peaks at around 3500-3200, 2894, 1649, 1430, 1369, 1050, and 900 cm⁻¹ are similar to the chemical compositions to the native cellulose type I. The broad peak at around 3500-3200 cm⁻¹ is attributed to the stretching of O-H groups. The absorption peak at around 2894 cm⁻¹ indicates the CH₂ groups of nanocellulose while the peak around 1649 cm⁻¹ is associated with the O-H bond of water absorption by nanocellulose. The absorption peak appearing at 1430 cm⁻¹ is related to CH₂ bending of the intermolecular hydrogen attraction at the C₆ group. The absorption peak at 1369 cm⁻¹ corresponds to the asymmetric stretching of C-H groups of polysaccharides, while the peak appearing at 1050 cm⁻¹ is the C-O stretching and C-H vibration in nanocellulose. The detected peak at 900 cm⁻¹ is associated with the C-H rocking vibration of β -glycosidic linkages between glucose units in nanocellulose.¹⁻²

[1] M. K. M. Haafiz, A. Hassan, Z. Zakaria and I. M. Inuwa, *Carbohydr. Polym.*, 2014, **103**, 119-125.

[2] N. Johar, I. Ahmad and A. Dufresne, *Ind. Crop. Prod.*, 2012, **37**, 93-99.

Fig.S-4 A: FT-IR spectra of (a) PTFE filter paper, (b) 0.1wt% nanocellulose-modified PTFE filter paper, and (c) FOTS treated 0.1wt% nanocellulose-modified PTFE filter paper; B: Enlargement between 500-2000 cm⁻¹.

Fig.S-5 Durability of the contact angles of water and n-hexadecane on the amphiphobic surface of FOTS treated 0.1wt% nanocellulose-modified PTFE filter paper in various environments.A: soaking in various NaCl solutions for 6 h ; B: various environmental temperatures ; C: soaking in various solutions with different pH values ; D: soaking in real seawater for different periods.

Fig.S-6 Various liquid droplets on the amphiphobic surface of FOTS treated 0.1wt% nanocellulose-modified PTFE filter paper.