# Organocatalytic Construction of Spirooxindole Naphthoquinones through Michael/hemiketalization using L-Proline derived Bifunctional Thiourea

# V pratap Reddy Gajulapalli, Kanduru Lokesh, Manjunatha vishwanath and Venkitasamy Kesavan\*

Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehtha School of Biosciences Building, Indian Institute of Technology Madras, Chennai-600036, India.

# **Supporting information**

### List of content

| 1. X-ray Crystallographic data for compound <b>5b</b>                   | S2-S3   |
|-------------------------------------------------------------------------|---------|
| 2. Analytical data of Michael addition reaction products                | S4-S17  |
| 3. <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra for new compounds | S18-S47 |
| 4. HPLC profile for catalyst screening (Table 1)                        | S48-S54 |
| 5. HPLC profile for the substrates (Table 3)                            |         |
| 6. HPLC profile for the substrates (Table 4)                            | S68-S72 |
| 7. HPLC profile for the compound <b>3a</b> in a large scale             | S73     |

#### **General remarks**

All reactions were carried out in an oven dried flask. Solvents used for reactions and column chromatography were commercial grade and distilled prior to use. Toluene and THF were dried over sodium/benzophenone, CH<sub>2</sub>Cl<sub>2</sub> and CHCl<sub>3</sub> over CaH<sub>2</sub>. Solvents for HPLC

bought as analytical grade and used without further purification. TLC was performed on precoated silica gel aluminium plates with  $60_F254$  indicator, visualised by irradiation with UV light. Column chromatography was performed using silica gel 60-100 mesh. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR were recorded on a 500 MHz instrument using DMSO-d<sub>6</sub> and CDCl<sub>3</sub> as solvent and multiplicity as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet) bs (broad singlet). Coupling constants *J* were reported in Hertz. High resolution mass spectra were obtained by ESI using Q-TOF mass spectrometer. IR spectra were reported in terms of frequency of absorption (cm<sup>-1</sup>). The enantiomeric excess is obtained by HPLC analysis using a chiral stationary phase column (CHIRALPAK AD-H, AS-H and OD-H). Optical rotation was recorded using polarimeter at a wavelength of 589 nm.

### 1. X-ray Crystallographic data for compound (5b)

CCDC 985882 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data\_request/cif.



| Table 1. | Crystal | data | and | structure | refinement | for | 5b |
|----------|---------|------|-----|-----------|------------|-----|----|
|----------|---------|------|-----|-----------|------------|-----|----|

| Identification code               | shelxl                                                          |
|-----------------------------------|-----------------------------------------------------------------|
| Empirical formula                 | C <sub>25</sub> H <sub>21</sub> I N <sub>2</sub> O <sub>6</sub> |
| Formula weight                    | 572.34                                                          |
| Temperature                       | 296(2) K                                                        |
| Wavelength                        | 0.71073 A                                                       |
| Crystal system, space group       | Orthorhombic, C222(1)                                           |
| Unit cell dimensions              | a = 14.6769(8) A alpha = 90 deg.                                |
|                                   | b = 25.2457(8) A beta = 90 deg.                                 |
|                                   | c = 13.0633(6) A gamma = 90 deg.                                |
|                                   |                                                                 |
| Volume                            | 4840.3(4) A^3                                                   |
| Z, Calculated density             | 8, 1.571 Mg/m^3                                                 |
| Absorption coefficient            | 1.366 mm^-1                                                     |
| F(000)                            | 2288                                                            |
| Crystal size                      | 0.35 x 0.32 x 0.30 mm                                           |
| Theta range for data collection   | 2.24 to 25.00 deg.                                              |
| Limiting indices                  | -17<=h<=17, -30<=k<=30, -15<=l<=15                              |
| Reflections collected / unique    | 29859 / 4280 [R(int) = 0.0526]                                  |
| Completeness to theta             | = 25.00 99.9 %                                                  |
| Absorption correction             | Semi-empirical from equivalents                                 |
| Max. and min. transmission        | 0.6897 and 0.6425                                               |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup>                     |
| Data / restraints / parameters    | 4280 / 57 / 326                                                 |
| Goodness-of-fit on F <sup>2</sup> | 1.042                                                           |
| Final R indices [I>2sigma(I)]     | R1 = 0.0391, WR2 = 0.0934                                       |
| R indices (all data)              | R1 = 0.0756, $wR2 = 0.1169$                                     |
| Absolute structure parameter      | -0.05(3)                                                        |
| Largest diff. peak and note       | 0.455 and -0.549 e.A <sup>(-5</sup>                             |

### **Optimization studies:**

8

9

10

| CO <sub>2</sub> Et |      | OH Cat. <b>4g</b> (5 mol%)                     |                        | OH<br>S CO <sub>2</sub> Et<br>O<br>N<br>3a |
|--------------------|------|------------------------------------------------|------------------------|--------------------------------------------|
|                    | S.No | Solvent                                        | Yield (%) <sup>b</sup> | ee (%) <sup>c</sup>                        |
|                    | 1    | DCM                                            | 84                     | 98                                         |
|                    | 2    | CHCl <sub>3</sub>                              | 85                     | 94                                         |
|                    | 3    | DCE                                            | 85                     | 97                                         |
|                    | 4    | Acetone                                        | 80                     | 96                                         |
|                    | 5    | Toluene                                        | 81                     | 94                                         |
|                    | 6    | CF <sub>3</sub> -C <sub>6</sub> H <sub>5</sub> | 82                     | 98                                         |
|                    | 7    | THF                                            | 81                     | 95                                         |

Diethylether

Acetonitrile

MTBE

Table . Solvent optimization studies of reaction conditions using organocatalyst 4g<sup>a</sup>

| <sup>a</sup> The reactions were carried out with 1 (0.1 mmol), 2 (0.1 mmol), and catalyst 4g (5 mol%) in 1            |  |
|-----------------------------------------------------------------------------------------------------------------------|--|
| ml of appropriate solvent at mentioned temperature. <sup>b</sup> Isolated yield. <sup>c</sup> Determined using chiral |  |
| stationary phase.                                                                                                     |  |

80

82

86

98

97

96

Subsequently, optimization of other parameters of the reaction conditions for the purpose of obtaining better yield was undertaken. Increasing the catalyst loading to 10 mol% or 20 mol%, did not have any significant improvement in the yield of the product 3a. Prolonged reaction duration was observed, when only 2 mol% of organocatalyst 4g was used. Instead of 5h, the completion of reaction was ascertained only after 3 days. Hence 5 mol% of catalyst loading was chosen for the identification of suitable reaction medium.. Since, protic solvents such as methanol and isopropanol are not suitable for H-bonding catalysis, they were not explored in solvent screening. The results suggest that there was little influence of solvents in this transformation. The expected product 3a was isolated in 80% yield and 90% ee irrespective of the reaction medium.

I.General procedure for the preparation of oxindole ketoesters 1.



Isatin (1.0 equiv) and phosphorus ylide (3.0 equiv) are stirred in THF under reflux for 2h. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography (silica gel, ethyl acetate: hexane = 1:10) to give the corresponding oxindole ketoesters **1** 

#### ethyl (E)-3-(1-benzyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 1b



General experimental procedure **I** was followed to prepare the product **1b**. The desired product was obtained as reddish brown solid Yield: 0.5 g, 36%; <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):  $\delta = 8.69$  (d, *J*=7.6 Hz, 1H), 7.92 (s, 1H), 7.27 - 7.38 (m, 6H), 7.05 (t, *J*=7.7 Hz, 1H), 6.72 (d, *J*=7.9 Hz, 1H), 4.96 (s, 2H), 4.45 (q, *J*=7.0 Hz, 2H), 1.45 (t, *J*=7.1 Hz, 3H); <sup>13</sup>C NMR (125MHz, CHLOROFORM-d):  $\delta = 182.93$ , 167.64, 161.01, 146.31, 140.26, 135.21, 120.00, 127.96 (127.27, 122.11, 121.04, 120.26, 100.444 (22.00, 44.0, 14.07, IR)

134.42, 129.17, 128.90, 127.86, 127.27, 123.11, 121.94, 120.26, 109.44, 63.00, 44.0, 14.07; IR (v, cm<sup>-1</sup>): 2982, 2933, 2360, 1722, 1689, 1594, 1463, 1350, 1268, 1186, 1096, 1047, 1012, 959, 902, 859, 834, 782, 750; HRMS (ESI) Calcd. for  $C_{20}H_{17}NO_4+Na^+$ : 358.1050, Found: 358.1045.

### ethyl (E)-2-oxo-3-(2-oxo-1-(prop-2-yn-1-yl)indolin-3-ylidene)propanoate1c

General experimental procedure I was followed to prepare the product 1c. The desired product



was obtained as reddish brown solid, Yield: 0.54 g, 35%. <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):  $\delta = 8.71$  (d, *J*=7.6 Hz, 1H), 7.87 (s, 1H), 7.49 (t, *J*=7.7 Hz, 1H), 7.13 (t, *J*=7.7 Hz, 1H), 7.05 (d, *J*=7.9 Hz, 1H), 4.56 (d, *J*=2.5 Hz, 2H), 4.44 (q, *J*=7.3 Hz, 2H), 2.28 (t, *J*=2.5 Hz, 1H), 1.45 (t, *J*=7.1 Hz, 3H). <sup>13</sup>C NMR (125MHz, CHLOROFORM-d):  $\delta = 182.83$ , 166.61, 160.93, 145.1, 139.91, 134.46, 129.19, 123.44, 122.12, 120.20, 109.42, 76.31, 72.70, 63.03, 29.43, 14.05; IR (v, cm<sup>-1</sup>): 3255, 2922, 2857, 1728, 1604, 1462, 1343, 1273, 1183,

1093, 1038, 924, 860, 814, 794, 753; HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>13</sub>NO<sub>4</sub>+Na<sup>+</sup>: 306.0737, Found: 306.0735.

### Ethyl (E)-3-(1-allyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 1d

General experimental procedure I was followed to prepare the product 1d. The desired product



was obtained as reddish brown solid, Yield: 0.56 g, 38%; <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):  $\delta = 8.68$  (d, *J*=7.6 Hz, 1H), 7.85 (s, 1H), 7.41 (t, *J*=7.7 Hz, 1H), 7.06 (t, *J*=7.7 Hz, 1H), 6.80 (d, *J*=7.6 Hz, 1H), 5.79 - 5.90 (m, 1H), 5.19 - 5.30 (m, 2H), 4.43 (q, *J*=7.1 Hz, 2H), 4.38 (d, *J*=4.7 Hz, 2H), 1.44 (t, *J*=7.1 Hz, 3H); <sup>13</sup>C NMR (125MHz, CHLOROFORM-d):  $\delta = 182.92$ , 167.19, 161.00, 146.4, 140.25, 134.4, 130.87, 129.13, 123.01, 121.76, 120.17, 117.92, 109.29, 62.96, 42.48, 14.05; IR (v, cm<sup>-1</sup>): 3059, 2986, 1736, 1689, 1611, 1467,

1435, 1349, 1265, 1189, 1154, 1093, 1046, 989, 929, 854, 783, 729, 699; HRMS (ESI) Calcd. for  $C_{16}H_{15}NO_4+Na^+$ : 308.0893, Found: 308.0890.

### ethyl (E)-3-(5-fluoro-1-methyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 1e

General experimental procedure I was followed to prepare the product 1e. The desired product



was obtained as reddish brown solid, Yield: 0.6 g, 40%. <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):  $\delta = 8.43$  (dd, *J*=9.1, 2.8 Hz, 1H), 7.85 (s, 1H), 7.14 (td, *J*=8.5, 2.5 Hz, 1H), 6.72 (dd, *J*=8.7, 4.3 Hz, 1H), 4.43 (q, *J*=7.3 Hz, 2H), 3.22 (s, 3H), 1.44 (t, *J*=7.1 Hz, 3H); <sup>13</sup>C NMR (125MHz, CHLOROFORM-d):  $\delta = 182.87$ , 167.09, 160.73, 159.79, 157.88, 143.27, 143.26, 139.95, 139.93, 122.72, 120.75, 120.70, 120.69, 120.51, 116.60, 116.39, 108.81, 108.75,

63.10, 26.42, 14.03; IR (v, cm<sup>-1</sup>): 3111, 3062, 2927, 2856, 1717, 1683, 1597, 1459, 1364, 1326, 1265, 1200, 1141, 1110, 1075, 1032, 998, 900, 838, 805, 723, 701; HRMS (ESI) Calcd. for  $C_{14}H_{12}NO_4F+Na^+$ : 300.0643, Found: 300.0640

### ethyl (E)-3-(5-chloro-1-methyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 1f

General experimental procedure I was followed to prepare the product 1f. The desired product



was obtained as reddish brown solid. 0.45 g, 38%. <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):  $\delta$ = 8.68 (s, 1H), 7.87 (d, *J*=1.6 Hz, 1H), 7.40 (d, *J*=8.2 Hz, 1H), 6.73 (d, *J*=8.2 Hz, 1H), 4.44 (q, *J*=7.3 Hz, 2H), 3.23 (s, 3H), 1.44 - 1.48 m, 3 H). <sup>13</sup>C NMR (125MHz, CHLOROFORM-d):  $\delta$  = 181.76, 165.88, 159.64, 144.44, 13.36, 132.83, 127.90, 127.42, 121.80, 119.98, 108.22, 62.07, 28.65, 12.98; IR (v, cm<sup>-1</sup>): 3744, 3240, 3064, 2922, 2855, 2326, 1723,

1599, 1453, 1353, 1313, 1254, 1170, 1101, 1025, 897, 820, 714 ; HRMS (ESI) Calcd. for  $C_{14}H_{12}NO_4Cl + Na^+ :$  316.0347, Found: 316.0345.

### ethyl (E)-3-(5-bromo-1-methyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 1g



General experimental procedure I was followed to prepare the product 1g. The desired product was obtained as reddish brown solid.Yield: 0.42 g, 40%. <sup>1</sup>H NMR (400MHz, CHLOROFORM-d):  $\delta = 8.67$  (d, *J*=2.2 Hz, 1H), 7.86 (s, 1H), 7.39 (dd, *J*=8.4, 2.1 Hz, 1H), 6.72 (d, *J*=8.3 Hz, 1H), 4.43 (q,

J=7.1 Hz, 2H), 3.22 (s, 3H), 1.44 (t, J=7.2 Hz, 3H). <sup>13</sup>C NMR (100MHz, CHLOROFORM-d):  $\delta = 182.89$ , 166.99, 160.76, 145.55, 139.45, 133.90, 128.98, 128.51, 122.92, 121.09, 109.29, 63.13, 26.45, 14.05; IR (v, cm<sup>-1</sup>): 3739, 3111, 3065, 2928, 2379, 2322, 1741, 1714, 1677, 1584, 1447, 1357, 1319, 1237, 1098, 998, 895, 833, 768, 708; HRMS (ESI) Calcd. for C<sub>14</sub>H<sub>12</sub>NO<sub>4</sub>Br+Na<sup>+</sup>: 359.9842, Found: 359.9840.

#### ethyl (E)-3-(5-iodo-1-methyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 1h



CO<sub>2</sub>Et General experimental procedure I was followed to prepare the product 1h. The desired product was obtained as reddish brown solid. Yield: 0.61g, 40%; <sup>1</sup>H NMR (500MHz, CHLOROFORM-d)  $\delta = 9.03$  (d, J = 1.6 Hz, 1 H), 7.89 (s, 1 H), 7.77 (dd, J = 1.6, 8.2 Hz, 1 H), 6.62 (d, J = 8.2 Hz, 1 H), 4.45 (q, J = 7.1 Hz, 2 H), 3.24 (s, 3 H), 1.46 (t, J = 7.3 Hz, 3 H);<sup>13</sup>C NMR (125MHz, CHLOROFORM-d)  $\delta = 182.8$ , 166.7, 160.7, 146.6, 142.8, 139.2, 137.3,

122.8, 121.9, 110.3, 85.4, 63.2, 26.4, 14.1; IR (v, cm<sup>-1</sup>): 3671, 2929, 2871, 2355, 1721, 1685, 1589, 1460, 1425, 1357, 1292, 1259, 1100, 1072, 1040, 1005, 906, 850, 803, 776, 707 HRMS (ESI) Calcd. for  $C_{14}H_{12}NO_4I+Na^+$ : 407.9703, Found: 407.9702.

#### ethyl (E)-3-(5-methoxy-1-methyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 1i

General experimental procedure I was followed to prepare the product 1i. The desired product



CO<sub>2</sub>Et was obtained as reddish brown solid. Yield: 0.32 g, 25%; <sup>1</sup>H NMR (400MHz, CHLOROFORM-d):  $\delta = 8.67$  (d, J = 2.0Hz, 1H) 8.36 (d, J=2.7 Hz, 1H), 7.82 (s, 1H), 7.00 (dd, J=8.6, 2.7 Hz, 1H), 6.68 (d, J=8.4 Hz, 1H), 4.43 (q, J=7.1 Hz, 2H), 3.85 (s, 3H), 3.20 (s, 3H), 1.43 (t, J=7.2 Hz, 3H). <sup>13</sup>C NMR (100MHz, CHLOROFORM-d):  $\delta =$ 182.99, 167.35, 161.00, 155.91, 141.26, 141.19, 121.61, 121.13,

120.65, 114.09, 108.93, 63.04, 55.96, 26.37, 14.08. IR (v, cm<sup>-1</sup>): 3062, 2931, 1742, 1711, 1675, 1587, 1475, 1360, 1273, 1228, 1133, 1087, 1027, 869, 814, 704; HRMS (ESI) Calcd. for  $C_{15}H_{15}NO_5+Na^+$ : 312.0842, Found: 312.0839.

#### ethyl (E)-3-(1-methyl-2-oxo-5-(trifluoromethoxy)indolin-3-ylidene)-2-oxopropanoate 1j

General experimental procedure I was followed to prepare the product **1j**. The desired product was obtained as reddish brown solid. Yield: 0.2g, 22%. <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):



δ = 7.87 (d, *J*=8.8 Hz, 1H), 7.80 (d, *J*=7.9 Hz, 1H), 7.45 (d, *J*=8.8 Hz, 1H), 7.29 (s, 1H), 4.30 - 4.40 (m, 2H), 3.47 (s, 3H), 1.38 (t, J = 3H). <sup>13</sup>C NMR (125MHz, CHLOROFORM-d): δ = 177.06, 161.00, 150.07, 145.69, 136.37, 131.61, 131.35, 130.81, 129.1, 127.52, 124.81, 122.25, 122.19, 119.05, 109.35, 62.01, 27.17, 14.16. IR (v, cm<sup>-1</sup>): 3435, 3056, 2926, 2855, 2362, 1723, 1692, 1603, 1472, 1366, 1255, 1213, 1165, 1142, 1113, 1083, 1042, 1007, 907, 861, 825, 733. HRMS (ESI) Calcd. for  $C_{15}H_{12}NO_5F_3+Na^+$ : 366.0560, Found: 366.0558

#### ethyl (E)-2-oxo-3-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)propanoate 1k

General experimental procedure I was followed to prepare the product 1k. The desired product was obtained as reddish brown solid: Yield: 0.18 g, 19%. <sup>1</sup>H NMR (500MHz, CHLOROFORM-



CO<sub>2</sub>Et d):  $\delta = 8.41$  (s, 1H), 7.79 (s, 1H), 6.98 (s, 1H), 4.43 (q, *J*=7.1 Hz, 2H), 3.49 (s, 3H), 2.50 (s, 3H), 2.29 (s, 3H), 1.44 (t, *J*=7.1 Hz, 3H) .<sup>13</sup>C NMR (125MHz, CHLOROFORM-d):  $\delta = 182.89$ , 168.35, 161.10, 142.62, 140.67, 139.14, 132.37, 127.55, 120.98, 120.91, 119.59, 62.89, 29.87, 20.67, 18.87, 14.06. IR (v, cm<sup>-1</sup>): 3057, 2926, 2863, 1739, 1707, 1683, 1589, 1444, 1349, 1237, 1124, 1077, 1014, 893, 858, 817, 774, 729 ;

HRMS (ESI) Calcd. for C<sub>16</sub>H<sub>17</sub>NO<sub>4</sub>+Na<sup>+</sup>: 310.1050, Found: 310.1046.

#### ethyl (E)-3-(7-fluoro-1-methyl-2-oxoindolin-3-ylidene)-2-oxopropanoate 11

General experimental procedure I was followed to prepare the product 11. The desired product



was obtained as reddish brown solid: Yield: 0.25 g, 22%. <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):  $\delta = 8.49$  (d, *J*=7.6 Hz, 1H), 7.88 (s, 1H), 7.15 - 7.22 (m, 1H), 7.01 (td, *J*=8.1, 4.6 Hz, 1H), 4.44 (q, *J*=7.1 Hz, 2H), 3.48 (d, *J*=2.8 Hz, 3H), 1.45 (t, *J*=7.1 Hz, 3H). <sup>13</sup>C NMR (125MHz, CHLOROFORM-d):  $\delta = 182.84$ , 167.09, 160.81, 148.58, 146.64, 139.50, 139.47, 133.46, 133.39, 124.94, 124.91, 123.45, 123.40, 123.0, 122.67, 122.64, 122.31, 122.16, 63.09,

29.04, 28.99, 14.04; IR (v, cm<sup>-1</sup>): 3076, 2956, 2923, 2854, 2359, 1750, 1719, 1682, 1625, 1593, 1460, 1352, 1236, 1125, 1087, 1012, 932, 890, 859, 795, 752, 712 ; HRMS (ESI) Calcd. for  $C_{14}H_{12}NO_4F+Na^+$ : 300.0643, Found: 300.0641.

### ethyl (E)-2-oxo-3-(2-oxoindolin-3-ylidene)propanoate 1m

General experimental procedure I was followed to prepare the product 1m. The desired product



was obtained as reddish brown solid. Yield: 0.2g, 20%. <sup>1</sup>H NMR (500MHz, CHLOROFORM-d):  $\delta = 8.68$  (s, 1H), 7.82 (s, 1H), 7.70 (dd, *J*=11.8, 7.7 Hz, 1H), 7.53 - 7.62 (m, 1H), 7.46 - 7.53 (m, 1H), 7.40 (t, *J*=7.6 Hz, 1H), 7.06 (t, *J*=7.7 Hz, 1H), 6.85 - 6.94 (m, 1H), 4.44 (q, *J*=6.9 Hz, 2H), 1.45. <sup>13</sup>C NMR (125MHz, CHLOROFORM-d)):  $\delta = 182.85$ , 169.04, 161.02, 144.69, 140.70, 134.64, 129.39, 123.10, 121.59, 120.67, 110.45, 63.01, 14.05 (t, *J*=7.1 Hz, 14), 140 (t, *J*=7.1 Hz, 14), 140 (t, *J*=7.1 Hz, 140 (t, *J*=7.1 Hz, 14), 140 (t, *J*=7.1 Hz, 140 (t, J=7.1 Hz, 140 (t, J=

3H). IR (v, cm<sup>-1</sup>): 31881, 3078, 2924, 2855, 1721, 1677, 1591, 1457, 1407, 1335, 1280, 1217, 1156, 1072, 900, 863, 776, 713 ; HRMS (ESI) Calcd. for  $C_{13}H_{11}NO_4+Na^+$ : 267.9689, Found: 267.9689.

#### **II. Typical procedure for spirooxindole napthaquinones:**



To the solution of oxindole ketoester 1 (0.2 mmol) and 2-hydroxynaphthaquinone 2 (0.2 mmol), and thiourea catalyst 4g (0.02 mmol) were stirred in 1 mL of dichloromethane at room temperature. After TLC showed that oxindole ketoester was completely consumed, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (hexane / acetate = 4:1) to give the corresponding products 3.

The Michael addition product was found to exist in rapid equilibrium with a hemiketal form in solution. These anomers equilibrate slowly enough that they show up as separate compounds by 1H and 13C NMR but quickly enough that they do not resolve by chromatography.

#### ethyl (4R)-2-hydroxy-1'-methyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3a

General experimental procedure II was followed to prepare the product 3a. The desired product



was obtained as foamy solid. Yield: 42 mg, 84%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>):  $\delta = 8.76$  (s, 1H), 8.02 - 8.09 (m, 1H), 7.71 - 7.92 (m, 4H), 7.51 (d, *J*=6.9 Hz, 1H), 7.29 (t, *J*=7.7 Hz, 1H), 7.09 (d, *J*=7.9 Hz, 1H), 6.87 - 6.98 (m, 1H), 4.25 (q, *J*=7.3 Hz, 2H), 3.24 (s, 3H), 2.48 (s, 1H), 2.25 (d, *J*=14.2 Hz, 1H), 1.25 (t, *J*=7.3 Hz, 3H). <sup>13</sup>C NMR (125MHz, DMSO-d<sub>6</sub>):  $\delta = 182.20$ , 178.86, 178.10, 166.89, 154.65, 144.29, 135.31, 134.57, 132.35, 131.16, 130.77, 128.68, 126.64, 126.44, 126.40, 122.08, 121.52, 109.05, 96.70, 62.65, 45.90, 38.4127.14, 14.32 ; IR (v, cm<sup>-1</sup>):

3655, 3417, 2925, 2858, 2358, 1727, 1649, 1606, 1461, 1374, 1346, 1274, 1127, 1024, 817, 732 ; HRMS (ESI) Calcd. for C<sub>24</sub>H<sub>19</sub>NO<sub>7</sub>+Na<sup>+</sup>: 582.0020, Found: 582.0014 The ee was determined

to be 98 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 70/30, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 15.8 min, t<sub>R</sub> (major) = 23.1 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -38.2 (c = 1.0, CHCl<sub>3</sub>).

### ethyl (4R)-1'-benzyl-2-hydroxy-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3b

General experimental procedure II was followed to prepare the product 3b. The desired product



was obtained as foamy solid. Yield: 39 mg, 85%. <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>):  $\delta = 8.82$  (s, 1H), 8.03 - 8.11 (m, 1H), 7.81 - 7.89 (m, 4H), 7.47 - 7.56 (m, 4H), 7.35 - 7.42 (m, 2H), 7.26 - 7.35 (m, 1H), 7.19 (td, *J*=7.7, 1.2 Hz, 1H), 6.87 - 6.98 (m, 3H), 4.95 - 5.08 (m, 2H), 4.26 (q, *J*=7.1 Hz, 2H), 2.58 (d, *J*=14.3 Hz, 1H), 2.34 (d, *J*=14.2 Hz, 1H), 1.26 (t, *J*=7.2 Hz, 3H). <sup>13</sup>C NMR (100MHz, DMSO-d<sub>6</sub>):  $\delta = 181.73$ , 178.34, 178.03, 177.75, 167.34, 154.46, 142.68, 136.23, 134.82, 134.10, 131.91, 130.66, 130.31, 128.60, 128.56, 128.06, 127.29,

127.17, 127.10, 126.17, 126.01, 125.95, 121.73, 120.72, 109.22, 96.96, 96.34, 62.19, 45.63, 38.33, 13.82. IR (v, cm<sup>-1</sup>): 3451, 3051, 2982, 1710, 1671, 1489, 1435, 1406, 1388, 1362, 1308, 1267, 1223, 1201, 1093, 1048, 1028, 950, 896, 822, 728; HRMS (ESI) Calcd. for  $C_{30}H_{23}NO_7$ +Na<sup>+</sup>: 532.1367, Found: 532.1347 The ee was determined to be 97 % by chiral HPLC analysis (Chiralcel OD-H, hexane/isopropanol 70/30, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 19.4 min, t<sub>R</sub> (major) = 6.6 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -56.2 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-2-hydroxy-2',5,10-trioxo-1'-(prop-2-yn-1-yl)-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3c



General experimental procedure **II** was followed to prepare the product **3c.** The desired product was obtained as foamy solid. Yield: 38 mg, 81%. <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>):  $\delta = 8.75 - 8.86$  (m, 1H), 7.99 - 8.08 (m, 1H), 7.74 - 7.89 (m, 3H), 7.49 - 7.58 (m, 1H), 7.33 (td, *J*=7.7, 1.1 Hz, 1H), 7.20 (d, *J*=7.7 Hz, 1H), 6.93 - 7.03 (m, 1H), 4.54 - 4.73 (m, 2H), 4.26 (q, *J*=7.1 Hz, 2H), 2.43 - 2.49 (m, 1H), 2.25 (d, *J*=14.1 Hz, 1H), 1.26 (t, *J*=7.1 Hz, 4H). <sup>13</sup>C NMR

(100MHz, DMSO-d<sub>6</sub>):  $\delta = 181.61$ , 178.30, 177.99, 176.81, 167.26, 154.27, 141.83, 134.81, 134.09, 131.69, 130.59, 130.2, 128.62, 128.15, 126.17, 126.11, 125.92, 121.98, 120.58, 96.18, 77.80, 74.63, 62.20, 45.45, 38.02, 29.42, 13.81. IR (v, cm<sup>-1</sup>): 3300, 3053, 1718, 1682, 1654, 1617, 1487, 1466, 1427, 1359, 1335, 1301, 1265, 1198, 1049, 1027, 1005, 968, 898, 82, 728, 700; HRMS (ESI) Calcd. for C<sub>26</sub>H<sub>19</sub>NO<sub>7</sub>+Na<sup>+</sup>: 480.1054, Found: 480.1050. The ee was determined to be 94 % by chiral HPLC analysis (Chiralcel OD-H, hexane/isopropanol 70/30, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 11.3 min, t<sub>R</sub> (major) = 6.1 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -45.5 (c = 1.0, CHCl<sub>3</sub>).

### ethyl (4R)-1'-allyl-2-hydroxy-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3d

General experimental procedure II was followed to prepare the product **3d.** The desired product was obtained as foamy solid. Yield: 35 mg, 86%. <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>):  $\delta = 8.76$  (s,



1H), 8.02 - 8.08 (m, 1H), 7.77 - 7.87 (m, 4H), 7.52 (dd, *J*=7.6, 0.9 Hz, 1H), 7.26 (td, *J*=7.7, 1.2 Hz, 1H), 6.98 - 7.08 (m, 1H), 6.93 (td, *J*=7.6, 0.9 Hz, 1H), 5.94 (ddt, *J*=17.2, 10.2, 4.9 Hz, 1H), 5.38 - 5.49 (m, 1H), 5.14 - 5.31 (m, 1H), 4.40 (dd, *J*=4.6, 1.8 Hz, 2H), 4.25 (q, *J*=7.1 Hz, 2H), 2.54 (s, 1H), 2.29 (d, *J*=14.2 Hz, 1H), 1.24 - 1.28 (m, 3H). <sup>13</sup>C NMR (100MHz, DMSO-d<sub>6</sub>):  $\delta$  = 181.70, 178.34, 177.37, 167.34, 154.33, 142.74, 134.79, 134.06, 131.91, 131.85, 131.64, 130.67, 130.29, 128.03, 126.14, 125.94, 121.58,

120.88, 116.84, 109.18, 96.28, 62.15, 59.70, 45.53, 42.06, 38.27, 20.70, 14.04, 13.56. IR (v, cm<sup>-1</sup>): 3302, 2959,2582, 1727, 1618, 1465, 1421,1402, 1365, 1264, 1222, 1186, 1035, 1025, 922, 802, 731, 702 ;HRMS (ESI) Calcd. for C<sub>26</sub>H<sub>21</sub>NO<sub>7</sub>+Na<sup>+</sup>: 482.1210, Found: 482.1203. The ee was determined to be 97 % by chiral HPLC analysis (Chiralcel OD-H, hexane/isopropanol 70/30, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 13.7 min, t<sub>R</sub> (major) = 5.8 min. [α]<sup>25</sup><sub>D</sub> = -71.2 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-5'-fluoro-2-hydroxy-1'-methyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3e

General experimental procedure II was followed to prepare the product **3e.** The desired product was obtained as foamy solid. Yield: 43 mg, 91%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>)  $\delta$  8.86 (s, 1H),



8.02 - 8.09 (m, 1H), 7.77 - 7.88 (m, 3H), 7.36 (dd, J=8.8, 2.5 Hz, 1H), 7.08 - 7.22 (m, 2H), 4.26 (q, J=6.9 Hz, 2H), 3.24 (s, 3H), 2.47 (s, 1H), 2.29 (d, J=14.2 Hz, 1H), 1.26 (t, J=7.1 Hz, 3H). <sup>13</sup>C NMR (125MHz, DMSO-d<sub>6</sub>)  $\delta$  182.26, 178.78, 177.88, 167.77, 159.26, 156.04 (d, J = 234 Hz, C-F), 140.65, 135.25, 133.82 (d, J = 8.8 Hz, C-F), 133.79, 131.16, 130.86, 126.52 (d, J = 28.3 Hz, C-F), 120.92, 114.93, 114.74, 114.71, 114.51, 109.75, 109.69, 97.32, 96.60, 62.72, 60.21, 46.19, 38.04, 27.34, 14.32. IR (v, cm<sup>-1</sup>): 3058, 2926, 1750, 1713, 1683, 1656,

1619, 1494, 1466, 1356, 1301, 1265, 1201, 1152, 1120, 1023, 958, 878, 814, 728 ; HRMS (ESI) Calcd. for  $C_{24}H_{18}NO_7F+Na^+$ : 474.0960, Found: 474.0957. The ee was determined to be 96 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 21.9 min, t<sub>R</sub> (major) = 32.0 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -53.2 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-5'-chloro-2-hydroxy-1'-methyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3f

General experimental procedure II was followed to prepare the product **3f.** The desired product was obtained as foamy solid. Yield: 41 mg, 88%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>):  $\delta = 8.80 - 8.88$ 



(m, 1H), 8.01 - 8.10 (m, 1H), 7.78 - 7.87 (m, 4H), 7.57 (d, J=2.2 Hz, 1H), 7.36 (dd, J=8.2, 2.2 Hz, 1H), 7.14 (d, J=8.2 Hz, 1H), 4.26 (q, J=6.9 Hz, 2H), 3.25 (s, 3H), 2.48 (d, J=14.5 Hz, 1H), 2.30 (d, J=14.2 Hz, 1H), 1.25 - 1.28 (m, 3H). <sup>13</sup>C NMR (125MHz, DMSO-d<sub>6</sub>):  $\delta = 182.31$ , 178.75, 177.79, 167.75, 154.77, 143.33, 135.22, 134.56, 134.03, 131.17, 130.91, 128.48, 126.83, 126.64, 126.46, 126.42, 126.12, 120.82, 110.48, 96.56, 62.72, 60.21, 45.99, 38.03, 27.32, 14.32. IR (v, cm<sup>-1</sup>): 3844, 3743, 3054, 2312, 1707, 1682, 1626, 1515, 1425, 1325, 1301, 1264, 1147, 1120, 1056,

945, 896, 729; HRMS (ESI) Calcd. for  $C_{24}H_{18}NO_7Cl+Na^+$ : 490.0664, Found: 490.0667. The ee was determined to be 98 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 19.7 min, t<sub>R</sub> (major) = 28.8 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -94.0 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-5'-bromo-2-hydroxy-1'-methyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3g

General experimental procedure II was followed to prepare the product 3g. The desired product



was obtained as foamy solid. Yield: 42 mg, 91%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>):  $\delta = 8.76$  (s, 1H), 8.00 - 8.12 (m, 1H), 7.75 - 7.90 (m, 4H), 7.51 (d, *J*=6.9 Hz, 1H), 7.24 - 7.39 (m, 1H), 7.06 - 7.19 (m, 1H), 6.86 - 7.00 (m, 2H), 4.25 (q, *J*=7.3 Hz, 2H), 3.24 (s, 3H), 2.42 - 2.49 (m, 1H), 2.25 (d, *J*=14.2 Hz, 1H), 1.25 (t, *J*=7.3 Hz, 3H); <sup>13</sup>C NMR (125MHz, DMSO-d<sub>6</sub>):  $\delta = 182.33$ , 178.74, 177.70, 167.75, 154.78, 143.72, 135.23, 134.57, 134.39, 131.33, 131.16, 130.91, 129.49, 126.64, 126.42, 120.80,113.94, 111.05, 96.55, 62.73, 45.93, 38.03, 27.29,

27.32, 14.32; IR (v, cm<sup>-1</sup>): 3837, 3726, 3051, 2357, 1703, 1682, 1626, 1517, 1428, 1348, 1301, 1267, 1139, 1107, 1075, 959, 886, 731; HRMS (ESI) Calcd. for  $C_{24}H_{18}BrNO_7+Na^+$ : 534.0159, Found: 534.0167. The ee was determined to be 96 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 15.5 min, t<sub>R</sub> (major) = 22.0 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -47.2 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-2-hydroxy-5'-iodo-1'-methyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3h

General experimental procedure **II** was followed to prepare the product **3h.** The desired product was obtained as foamy solid. Yield: 41 mg, 90%. <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>)  $\delta$  = 8.85 (s, 1H), 8.02 - 8.06 (m, 1H), 7.83 - 7.86 (m, 2H), 7.77 - 7.83 (m, 2H), 7.61 - 7.69 (m, 1H), 6.98 (d, *J*=8.2 Hz, 1H), 4.26 (q, *J*=7.1 Hz, 2H), 3.22 (s, 3H), 2.48 (d, *J*=4.9 Hz, 1H), 2.29 (d, *J*=14.2 Hz,



1H), 1.26 (t, J=7.1 Hz, 3H);<sup>13</sup>C NMR (100MHz, DMSO-d<sub>6</sub>):  $\delta =$  181.84, 178.25, 177.06, 167.27, 154.29, 143.67, 136.63, 134.74, 134.40, 134.16, 134.09, 130.65, 130.41, 126.15, 125.93, 120.35, 111.11, 96.05, 84.83, 62.23, 45.25, 37.58, 26.72, 13.83; IR (v, cm<sup>-1</sup>): 3671, 2929, 2871, 2355, 1721, 1685, 1589, 1460, 1425, 1357, 1292, 1259, 1100, 1072, 1040, 1005, 906, 850, 803, 776, 707; HRMS (ESI) Calcd. for C<sub>24</sub>H<sub>18</sub>NO<sub>7</sub>I+Na<sup>+</sup>: 582.0020, Found: 582.0014. The ee was determined to be 98 % by chiral HPLC analysis (Chiralcel AD-H,

hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) =35.2 min, t<sub>R</sub> (major) = 52 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -102.5 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-2-hydroxy-5'-methoxy-1'-methyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3i

General experimental procedure II was followed to prepare the product 3i. The desired product



was obtained as foamy solid. Yield: 38 mg, 82%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>):  $\delta = 8.77$  (s, 1H), 8.04 (dd, *J*=6.0, 2.5 Hz, 1H), 7.78 - 7.86 (m, 4H), 7.18 (d, *J*=2.5 Hz, 1H), 7.00 (d, *J*=8.5 Hz, 1H), 6.86 (dd, *J*=8.5, 2.8 Hz, 1H), 4.25 (q, *J*=7.3 Hz, 2H), 3.63 - 3.67 (m, 4H), 3.21 (s, 3H), 2.48 (s, 1H), 2.24 (d, *J*=14.2 Hz, 1H), 1.25 (t, *J*=7.1 Hz, 3H); <sup>13</sup>C NMR (125MHz, DMSO-d<sub>6</sub>):  $\delta = 182.19$ , 178.88, 179.69, 167.87, 155.27, 154.63, 137.74, 135.27, 134.52, 133.63, 131.20, 130.80, 126.61, 126.40, 121.49, 114.28, 112.60, 109.18, 96.69, 62.65, 55.78,

46.26, 38.35, 27.21, 14.32; IR (v, cm<sup>-1</sup>): 3844, 3742, 3056, 1749, 1679, 1616, 1499, 1465, 1427, 1358, 1264, 1202, 1162, 1026, 952, 895, 729, 701; HRMS (ESI) Calcd. for  $C_{25}H_{21}NO_8+Na^+$ : 486.1159, Found: 486.1151. The ee was determined to be 95 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 0.8 mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> ( minor) = 22.5 min, t<sub>R</sub> (major) = 29.9 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -89.5 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-2-hydroxy-1'-methyl-2',5,10-trioxo-5'-(trifluoromethoxy)-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3j

General experimental procedure II was followed to prepare the product 3i. The desired product



was obtained as foamy solid. Yield: 38 mg, 86%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>):  $\delta = 8.88$  (s, 1H), 8.05 (dd, *J*=6.3, 1.9 Hz, 1H), 7.79 - 7.88 (m, 3H), 7.54 (s, 1H), 7.30 - 7.35 (m, 1H), 7.20 (d, *J*=8.5 Hz, 1H), 4.26 (q, *J*=6.9 Hz, 2H), 3.26 (s, 3H), 2.46 (s, 1H), 2.33 (d, *J*=14.2 Hz, 1H), 1.26 (t, *J*=7.1 Hz, 3H) ppm. <sup>13</sup>C NMR (125MHz, DMSO-d<sub>6</sub>):  $\delta = 182.28$ , 178.73, 178.03, 167.74, 154.82, 143.50, 143.48, 135.26, 134.59, 133.60, 131.13, 130.91, 126.67, 126.41, 123.68, 121.77, 121.65, 120.66, 120.47,

119.62, 110.82, 109.8, 96.62, 62.74, 46.05, 37.93, 27.36, 14.31 ppm. IR (v, cm<sup>-1</sup>): 3744, 3672,

3054, 1718, 1685, 1653, 1620, 1499, 1422, 1358, 1263, 1220, 1161, 1054, 1029, 969, 896, 819, 729, 701; HRMS (ESI) Calcd. for  $C_{25}H_{18}NO_8F_3+Na^+$ : 540.0877, Found: 540.0877. The ee was determined to be 94 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 90/10, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 25.4 min, t<sub>R</sub> (major) = 37.9 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -61.4 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-2-hydroxy-1',5',7'-trimethyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3k

General experimental procedure II was followed to prepare the product **3k.** The desired product was obtained as foamy solid. Yield: 37 mg, 81%. <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>):  $\delta$  = 8.66 (s,



1H), 7.80 (m, 4H), 7.16 (s, 1H), 7.15(s, 1H), 6.83 (s, 1H), 4.23 (q, J=7.1 Hz, 2H), 3.46 (s, 3H), 2.56 (s, 3H), 2.46 (s, 1H), 2.19 (d, J=14.2 Hz, 1H), 2.13 (s, 3H), 1.22 - 1.26 (m, 3H). <sup>13</sup>C NMR (100MHz, DMSO-d<sub>6</sub>):  $\delta = 181.65$ , 178.38, 178.10, 167.30, 154.24, 138.98, 134.77, 134.01, 132.83, 132.11, 130.73, 130.25, 126.09, 125.90, 124.06, 121.35, 119.11, 96.78, 96.30, 62.04, 46.16, 45.16, 29.74, 20.43, 18.48, 13.79; IR (v, cm<sup>-1</sup>): 3457, 2856, 2874, 1839, 1745, 1683, 1514, 1466, 1444, 1349, 1237, 1125, 1142, 1025, 956, 817, 782, 752; HRMS (ESI) Calcd. for

 $C_{26}H_{23}NO_7+Na^+$ : 484.1367, Found: 484.1365. The ee was determined to be 89 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 14.7 min, t<sub>R</sub> (major) = 26.2 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -65.5 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (4R)-7'-fluoro-2-hydroxy-1'-methyl-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'-indoline]-2-carboxylate 3l

General experimental procedure II was followed to prepare the product 3k. The desired product



was obtained as foamy solid. Yield: 41 mg, 81%. <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>):  $\delta = 8.82$  (s, 1H), 8.01 - 8.07 (m, 1H), 7.78 - 7.86 (m, 4H), 7.37 (dd, *J*=7.6, 1.0 Hz, 1H), 7.17 (ddd, *J*=11.9, 8.4, 0.7 Hz, 1H), 6.93 (td, *J*=8.0, 4.7 Hz, 1H), 4.25 (q, *J*=7.2 Hz, 2H), 3.41 (d, *J*=2.8 Hz, 4H), 2.47 (s, 1H), 2.33 (d, *J*=14.3 Hz, 1H), 1.23 - 1.27 (m, 3H) ppm. <sup>13</sup>C NMR (100MHz, DMSO-d<sub>6</sub>):  $\delta = 187.06$ , 183.53, 182.50, 172.50, 172.19, 159.80, 152.29 (d, *J* = 239 Hz, C-F), 140.10, 139.93, 139.40, 135.84, 135.64, 131.55, 131.45, 127.56 (d, *J* = 5.6 Hz, C-F), 125.78, 121.31 (d, *J* 

= 23.3 Hz, C-F) , 101.45, 67.44, 50.85, 43.30, 43.07, 34.30, 34.24, 19.06; IR (v, cm<sup>-1</sup>): 3402, 3050, 2925, 2855, 2362, 1719, 1683, 1655, 1623, 1463, 1363, 1266, 1202, 1119, 1055, 1029, 819, 730, 702; HRMS (ESI) Calcd. for  $C_{24}H_{18}NO_7F+Na^+$ : 474.0960, Found: 474.0957. The ee was determined to be 94 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 23.4 min, t<sub>R</sub> (major) = 34.6 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -114.0 (c = 1.0, CHCl<sub>3</sub>).

### ethyl (4R)-2-hydroxy-2',5,10-trioxo-2,3,5,10-tetrahydrospiro[benzo[g]chromene-4,3'indoline]-2-carboxylate 3m

General experimental procedure II was followed to prepare the product **3k.** The desired product was obtained as foamy solid. Yield: 39mg,78%. <sup>1</sup>H NMR (400MHz, DMSO-d<sub>6</sub>):  $\delta = 10.72$  (s,



1H), 8.68 (d, J=1.8 Hz, 1H), 8.02 - 8.11 (m, 1H), 7.78 - 7.89 (m, 4H), 7.44 (d, J=7.5 Hz, 1H), 7.18 (td, J=7.7, 1.3 Hz, 1H), 6.89 - 7.02 (m, 1H), 6.82 - 6.88 (m, 2H), 4.25 (q, J=7.2 Hz, 2H), 2.46 (d, J=2.0 Hz, 1H), 2.24 (d, J=14.2 Hz, 1H), 1.25 - 1.27 (m, 3H). <sup>13</sup>C NMR (100MHz, DMSO-d<sub>6</sub>):  $\delta$ = 181.70, 179.24, 178.41, 167.43, 154.13, 142.28, 134.79, 134.02, 132.85, 130.73, 130.26, 128.0, 126.15, 126.10, 125.87, 123.06, 121.22, 120.9, 109.57, 96.22, 62.10, 45.94, 38.16, 13.82; IR (v, cm<sup>-1</sup>): 3429, 3025, 2251, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.10, 125.1

2124, 1719, 1656, 1612, 1205, 1201, 1145, 1051, 1023, 1002, 821, 758; HRMS (ESI) Calcd. for  $C_{23}H_{17}NO_7+Na^+$ : 442.0897, Found: 442.0895 The ee was determined to be 60 % by chiral HPLC analysis (Chiralcel OD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 15.4 min, t<sub>R</sub> (major) = 22.4 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -72.5 (c = 1.0, CHCl<sub>3</sub>).

#### III. Typical procedure for the synthesis of spirooxindole dihydropyridine napthaquinones

A solution of compound 3(1equiv) and ammonium acetate (1.5 equiv) in dichloromethane was stirred for 4h. The solvent was evaporated and the mixture was purified by column chromatography on silica gel, eluted by hexane/EtOAc= 15:1 to affords products 5

# ethyl (R)-1'-allyl-2',5,10-trioxo-5,10-dihydro-1H-spiro[benzo[g]quinoline-4,3'-indoline]-2-carboxylate 5a

General experimental procedure III was followed to prepare the product 5a. The desired product



was obtained as foamy solid. Yield: 35 mg, 89%. <sup>1</sup>H NMR (400MHz, CHLOROFORM-d):  $\delta = 8.00 - 8.05$  (m, 1H), 7.81 - 7.85 (m, 2H), 7.55 - 7.60 (m, 2H), 7.20 - 7.25 (m, 1H), 7.19 - 7.20 (m, 1H), 7.11 (dd, *J*=7.4, 0.9 Hz, 1H), 6.95 (td, *J*=7.5, 0.9 Hz, 1H), 6.84 (d, *J*=7.8 Hz, 1H), 5.94 (ddt, *J*=17.2, 10.4, 5.2 Hz, 1H), 5.59 (d, *J*=1.8 Hz, 1H), 5.44 (dd, *J*=17.2, 1.1 Hz, 1H), 5.26 (dd, *J*=10.4, 1.2 Hz, 1H), 4.34 - 4.49 (m, 3H), 4.19 - 4.28 (m, 2H), 1.23 - 1.27 (m,

3H) ppm. <sup>13</sup>C NMR (100MHz, CHLOROFORM-d)  $\delta$  = 181.29, 179.46, 177.95, 161.52, 141.30, 140.16, 136.17, 135.0, 132.75, 132.65, 131.37, 130.05, 129.11, 127.5, 126.67, 126.36, 124.81, 123.10, 117.97, 112.57, 109.18, 62.39, 50.88, 43.03, 29.70, 14.11; IR (v, cm<sup>-1</sup>): 3625, 3428, 3152, 2259, 2623, 2210, 1697, 1651, 1610, 1615, 1414, 1245, 1220, 1165, 1092, 1034, 952, 802, 731, 702; HRMS (ESI) Calcd. for C<sub>26</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub>+Na<sup>+</sup>: 463.1511, Found: 463.1512. The ee was determined to be 89 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 70/30,

1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 12.7 min, t<sub>R</sub> (major) = 17.3 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -59.5 (c = 1.0, CHCl<sub>3</sub>).

### ethyl (R)-5'-iodo-1'-methyl-2',5,10-trioxo-5,10-dihydro-1H-spiro[benzo[g]quinoline-4,3'indoline]-2-carboxylate 5b

General experimental procedure III was followed to prepare the product **5b.** The desired product was obtained as foamy solid. Yield: 32 mg, 80%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>):  $\delta$  = 8.05 - 8.07



(m, 1H), 8.01 - 8.05 (m, 1H), 7.82 - 7.86 (m, 1H), 7.77 - 7.82 (m, 1H), 7.66 (dd, *J*=8.2, 1.6 Hz, 1H), 7.60 (d, *J*=1.9 Hz, 1H), 6.93 (d, *J*=8.2 Hz, 1H), 5.62 (d, *J*=1.6 Hz, 1H), 4.23 - 4.31 (m, 2H), 3.21 (s, 3H), 1.27 (t, *J*=7.3 Hz, 3H) ppm. <sup>13</sup>C NMR (125MHz DMSO-d<sub>6</sub>):  $\delta$  = 181.18, 179.16, 177.19, 161.63, 142.39, 140.98, 138.66, 137.87, 135.69, 133.81, 133.38, 132.29, 130.45, 127.76, 126.61,

126.24, 112.38, 111.36, 111.16, 85.98, 62.69, 50.64, 27.01, 14.31 ppm. IR (v, cm<sup>-1</sup>): 3396, 3066, 2962, 1716, 1679, 1652, 1600, 1575, 1484, 1405, 1337, 1278, 1215, 1143, 1088, 1049, 1021, 931, 861, 804, 765, 725; HRMS (ESI) Calcd. for  $C_{24}H_{17}N2O_5I+Na^+$ : 563.0074, Found: 563.0068. The ee was determined to be 95 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 90/10, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 34.6 min, t<sub>R</sub> (major) = 48.0 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -95.5 (c = 1.0, CHCl<sub>3</sub>).

### ethyl (R)-1',5',7'-trimethyl-2',5,10-trioxo-5,10-dihydro-1H-spiro[benzo[g]quinoline-4,3'indoline]-2-carboxylate 5c

General experimental procedure III was followed to prepare the product 5c. The desired product



was obtained as foamy solid. Yield: 36 mg, 85%. <sup>1</sup>H NMR (400MHz, CHLOROFORM-d):  $\delta = 7.99 - 8.03$  (m, 1H), 7.82 - 7.85 (m, 1H), 7.79 (s, 1H), 7.53-7.61 (m,, 2H), 7.19 (s, 1H), 6.72 - 6.79 (m, 2H), 5.58 (d, *J*=1.8 Hz, 1H), 4.22 (m, 4.12-4.26, 2H), 3.54 (s, 3H), 2.53 (s, 3H), 2.13 (s, 3H), 1.24 (t, 3H) ppm. <sup>13</sup>C NMR (100MHz, CHLOROFORM-d):  $\delta = 181.43$ , 179.49, 179.06, 161.61, 140.02, 137.34, 137.06, 134.89, 133.48, 132.70, 132.57, 130.10, 127.12, 126.59, 126.33, 123.72, 119.45, 113.16, 112.42,

62.28, 50.45, 30.24, 29.70, 20.69, 18.89, 14.08; IR (ν, cm<sup>-1</sup>): 3396, 3057, 2922, 2853, 2358, 1720, 1605, 1467, 1343, 1267, 1175, 1101, 1048, 944, 859, 732 ;HRMS (ESI) Calcd. for  $C_{26}H_{22}N_2O_5$ +Na<sup>+</sup>: 465.1421, Found: 465.1425. The ee was determined to be 82 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 70/30, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 11.1 min, t<sub>R</sub> (major) = 14.3 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -24.5 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (R)-7'-fluoro-1'-methyl-2',5,10-trioxo-5,10-dihydro-1H-spiro[benzo[g]quinoline-4,3'-indoline]-2-carboxylate 5d

General experimental procedure III was followed to prepare the product 5d. The desired product



was obtained as foamy solid. Yield: 39 mg, 90%. <sup>1</sup>H NMR (400MHz, CHLOROFORM-d):  $\delta = 8.01 - 8.03$  (m, 1H), 7.81 - 7.83 (m, 2H), 7.55 - 7.63 (m, 2H), 7.19 (s, 1H), 6.93 - 7.01 (m, 1H), 6.86 - 6.89 (m, 2H), 5.59 (d, *J*=1.8 Hz, 1H), 3.48 - 3.51 (m, 3H), 1.23 - 1.26 (t, 3H) ppm. <sup>13</sup>C NMR (100MHz, CHLOROFORM-d):  $\delta = 181.3$ , 179.28, 178.00, 161.38, 147.5 (d, *J* = 243 Hz, C-F) , 140.06, 135.04, 132.87, 132.56, 130.04, 129.61, 126.55, 126.45, 123.58 (d, *J* 

= 7.8 Hz, C-F) , 120.65, 120.62, 117.11 (d, J = 24 Hz, C-F) , 112.05, 111.88, 62.45, 29.42, 29.37, 14.07; IR (v, cm<sup>-1</sup>): 3395, 2927, 2862, 1720, 1683, 1651, 1633, 1602, 1483, 1339, 1276, 1239, 1171, 1119, 1070, 1011, 943, 866, 786, 728 ; HRMS (ESI) Calcd. for C<sub>24</sub>H<sub>17</sub>FN<sub>2</sub>O<sub>5</sub>+Na<sup>+</sup>: 455.1014, Found: 455.1023. The ee was determined to be 97 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> ( minor) = 14.3 min, t<sub>R</sub> (major) = 17.9 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -58.5 (c = 1.0, CHCl<sub>3</sub>).

# ethyl (R)-5'-chloro-1'-methyl-2',5,10-trioxo-5,10-dihydro-1H-spiro[benzo[g]quinoline-4,3'-indoline]-2-carboxylate 5e

General experimental procedure III was followed to prepare the product 5e. The desired product



was obtained as foamy solid. Yield: 31 mg, 82%. <sup>1</sup>H NMR (500MHz, DMSO-d<sub>6</sub>):  $\delta = 8.04 - 8.06$  (m, 2H), 7.78 - 7.85 (m, 3H), 7.38 (s, 1H), 7.35 - 7.37 (m, 1H), 7.07 - 7.12 (m, 1H), 5.62 (d, *J*=1.6 Hz, 1H), 4.24 - 4.31 (m, 2H), 3.23 (s, 3H), 1.26 (s, 3H) ppm. <sup>13</sup>C NMR (125MHz, DMSO-d<sub>6</sub>):  $\delta = 181.18$ , 179.17, 177.48, 161.61, 141.50, 141.0, 138.05, 135.71, 133.83, 132.29, 130.43, 129.17, 127.84, 127.03, 126.61, 126.24, 125.42, 112.27, 111.12,

110.29, 62.69, 50.87, 27.11, 14.30 ppm. IR (v, cm<sup>-1</sup>): 3672, 3398, 3052, 2926, 2857, 2359, 1720, 1651, 1605, 1488, 1464, 1345, 1270, 1221, 1129, 1055, 1030, 902, 817, 731, 701; HRMS (ESI) Calcd. for  $C_{24}H_{17}CIN2O_5+Na^+$ : 471.0718, Found: 471.0709. The ee was determined to be 97 % by chiral HPLC analysis (Chiralcel AD-H, hexane/isopropanol 80/20, 1.0mL/min,  $\lambda$ = 254 nm): t<sub>R</sub> (minor) = 22.8 min, t<sub>R</sub> (major) = 29.9 min. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -33.5 (c = 1.0, CHCl<sub>3</sub>).



### 2. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for new compounds compound 1b





### <sup>1</sup>H and <sup>13</sup>C NMR of compound 1d

SM12141.....Muthusamy,



# <sup>1</sup>H and <sup>13</sup>C NMR of compound 1e

SM3227....s.muthusamy







<sup>1</sup>H and <sup>13</sup>C NMR of compound 1g



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 1h







## <sup>1</sup>H and <sup>13</sup>C NMR of compound 1j





### <sup>1</sup>H and <sup>13</sup>C NMR of 1k

SM3243....S.MUTHUSAMY



## <sup>1</sup>H and <sup>13</sup>C NMR of compound 11

SM3235....S.MUTHUSAMY



<sup>1</sup>H and <sup>13</sup>C NMR of compound 1m



## <sup>1</sup>H and <sup>13</sup>C NMR of compound 3a

GV-28-137.....Pratap



## <sup>1</sup>H and <sup>13</sup>C NMR of compound 3b

GV-28-1-B iitm-Proton(-5to15) DMSO /opt/topspin nmr 14







<sup>1</sup>H and <sup>13</sup>C NMR of compound 3c



GV-28-1-A iitm\_carbonshort DMSO /opt/topspin nmr 7



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 3d

lab spaacr-gv-28-113 iitm-Proton(-5to15) DMSO /opt/topspin nmr 12



# <sup>1</sup>H and <sup>13</sup>C NMR of compound 3e

GV-28-79....Pratap reddy



GV-28-79.....Pratap reddy



<sup>1</sup>H and <sup>13</sup>C NMR of compound 3f





# <sup>1</sup>H and <sup>13</sup>C NMR of compound 3g

GV-28-83.....Pratap


### <sup>1</sup>H and <sup>13</sup>C NMR of compound 3h



GV-28-97 iitm\_carbonshort DMSO /opt/topspin nmr 7



<sup>1</sup>H and <sup>13</sup>C NMR of compound 3i





## <sup>1</sup>H and <sup>13</sup>C NMR of compound 3j



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 3k



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 3l

lab spagps-28-127 iitm-Proton(-5to15) CDC13 /opt/topspin nmr 8



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 3m



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 5a

gv-28-113



### <sup>1</sup>H and <sup>13</sup>C NMR of Compound 5b

GV-28-99....Pratap reddy



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 5c

GV-28-113



### <sup>1</sup>H and <sup>13</sup>C NMR of compound 5d

gv-28-127-1 proton





## <sup>1</sup>H and <sup>13</sup>C NMR of compound 5e

# 3. HPLC profile for catalyst screening

### HPLC profile for racemic compound 3a

#### <Chromatogram>



| PDA Ch1 220 | nm 4mm    |          | PeakTable |         |          |
|-------------|-----------|----------|-----------|---------|----------|
| Peaks       | Ret. Time | Area     | Height    | Area %  | Height % |
| 1           | 16.022    | 6620327  | 67443     | 50.202  | 50.451   |
| 2           | 23.091    | 6567057  | 66238     | 49.798  | 49.549   |
| Total       |           | 13187384 | 133682    | 100.000 | 100.000  |

HPLC profile for table 1, entry 1

#### <Chromatogram>



PeakTable

|                   |           |         | a water a second |         |          |  |  |  |  |
|-------------------|-----------|---------|------------------|---------|----------|--|--|--|--|
| PDA Chl 220mm 4mm |           |         |                  |         |          |  |  |  |  |
| Peak#             | Ret. Time | Area    | Height           | Area %  | Height % |  |  |  |  |
| 1                 | 16.499    | 2242164 | 23134            | 69.366  | 69.969   |  |  |  |  |
| 2                 | 23.865    | 990196  | 9929             | 30.634  | 30.031   |  |  |  |  |
| Total             |           | 3232360 | 33063            | 100.000 | 100.000  |  |  |  |  |



PDA Chl 254mm 4mm

<Chromatogram>

| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 16.351    | 8033811 | 81560  | 85.461  | 85.128   |
| 2     | 23.610    | 1366721 | 14249  | 14.539  | 14.872   |
| Total |           | 9400532 | 95809  | 100.000 | 100.000  |

HPLC profile for table 1, entry 3





1 PDA Multi 1/220nm 4nm

| 2DA Ch1 220nm 4nm |           |         |        |         |          |  |  |  |  |
|-------------------|-----------|---------|--------|---------|----------|--|--|--|--|
| Peak#             | Ret. Time | Area    | Height | Area %  | Height % |  |  |  |  |
| 1                 | 16.152    | 7381994 | 80017  | 80.348  | 80.011   |  |  |  |  |
| 2                 | 23.161    | 1805526 | 19991  | 19.652  | 19.989   |  |  |  |  |
| Total             |           | 9187520 | 100008 | 100.000 | 100.000  |  |  |  |  |



#### <Chromatogram>



PeakTable

| DA (b) 220mm 4mm |           |          |        |         |          |  |  |  |  |
|------------------|-----------|----------|--------|---------|----------|--|--|--|--|
| Peak#            | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |  |
| 1                | 16.177    | 3745378  | 41022  | 36.917  | 38.388   |  |  |  |  |
| 2                | 23.199    | 6399887  | 65840  | 63.083  | 61.612   |  |  |  |  |
| Total            |           | 10145265 | 106862 | 100.000 | 100.000  |  |  |  |  |

HPLC profile for table 1, entry 5

#### <Chromatogram>



| PDA Ch1 220mm 4mm |           |          |        |         |          |  |  |  |
|-------------------|-----------|----------|--------|---------|----------|--|--|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |
| 1                 | 16.301    | 3397507  | 33862  | 31.995  | 31.978   |  |  |  |
| 2                 | 23.581    | 7221231  | 72029  | 68.005  | 68.022   |  |  |  |
| Total             |           | 10618739 | 105891 | 100.000 | 100.000  |  |  |  |



# HPLC profile for table 1, entry 7

4006202

16.198 23.210

Total

27460 15713 43173

63.653 36.347 100.000

63.604 36.396 100.000

#### <Chromatogram>

<Chromatogram>



1 PDA Multi 1/220nm 4nm

|            |           |          | 1 Can Labure |         |          |
|------------|-----------|----------|--------------|---------|----------|
| DA Ch1 220 | nun 4mm   |          |              |         |          |
| Peak#      | Ret. Time | Area     | Height       | Area %  | Height % |
| 1          | 16.294    | 648338   | 7513         | 1.301   | 1.531    |
| 2          | 23.509    | 49193147 | 483143       | 98.699  | 98.469   |
| Total      |           | 49841485 | 490655       | 100.000 | 100.000  |



#### <Chromatogram>



HPLC profile for table 1, entry 10

#### <Chromatogram>



| PDA Chl 220mm 4mm |           |          |        |         |          |  |  |  |  |
|-------------------|-----------|----------|--------|---------|----------|--|--|--|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |  |
| 1                 | 16.305    | 3776143  | 38094  | 8.352   | 8.503    |  |  |  |  |
| 2                 | 23.497    | 41433947 | 409921 | 91.648  | 91.497   |  |  |  |  |
| Total             |           | 45210090 | 448014 | 100.000 | 100.000  |  |  |  |  |





HPLC profile for table 1, entry 12

#### <Chromatogram>

<Chromatogram>



| PDA Chl 220mm 4mm |           |          |        |         |          |  |  |  |
|-------------------|-----------|----------|--------|---------|----------|--|--|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |
| 1                 | 16.505    | 1403337  | 15178  | 8.890   | 9.950    |  |  |  |
| 2                 | 23.798    | 14381748 | 137359 | 91.110  | 90.050   |  |  |  |
| Total             |           | 15785085 | 152537 | 100.000 | 100.000  |  |  |  |

<Chromatogram>



HPLC profile for table 1, entry 14

#### <Chromatogram>



| PDA Ch1 254nm 4nm |           |          |        |         |          |  |  |  |  |
|-------------------|-----------|----------|--------|---------|----------|--|--|--|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |  |
| 1                 | 16.443    | 62636435 | 613728 | 96.656  | 96.271   |  |  |  |  |
| 2                 | 24.058    | 2166780  | 23771  | 3.344   | 3.729    |  |  |  |  |
| Total             |           | 64803216 | 637499 | 100.000 | 100.000  |  |  |  |  |

# 4. HPLC profile for the substrates

### HPLC profile for table 3, entry 1

#### <Chromatogram>



| ٠ |       |           |         |        |         |          |  |  |  |
|---|-------|-----------|---------|--------|---------|----------|--|--|--|
|   | Peak# | Ret. Time | Area    | Height | Area %  | Height % |  |  |  |
|   | 1     | 15.872    | 2231116 | 30794  | 48.245  | 53.694   |  |  |  |
|   | 2     | 23.107    | 2393407 | 26557  | 51.755  | 46.306   |  |  |  |
|   | Total |           | 4624524 | 57351  | 100.000 | 100.000  |  |  |  |

#### <Chromatogram>

D:/reddy/organo catalysis/Data/KETOESTER+2-HYDROXYNAPH/GV-20-137CHI(AD-H+1ML+30ML+0.1%TFA).lcd mAU



1 PDA Multi 1/254nm 4nm

2

Total

| PDA Ch1 2 | 54nm 4nm  | PeakTable |        |        |          |  |  |
|-----------|-----------|-----------|--------|--------|----------|--|--|
| Peak#     | Ret. Time | Area      | Height | Area % | Height % |  |  |
| 1         | 15.949    | 673358    | 8872   | 1.092  | 1.3      |  |  |
| 2         | 23 134    | 60991857  | 667158 | 98 908 | 98.6     |  |  |

61665214

676030

100.000

1.312

98.688

100.000



#### <Chromatogram>

D:....KETOESTER+2-HYDROXYNAPH/SUBSTRATES/BENZYL/GV-28-1-B/RAC/GV-28-1-B rac (OD-H+1ML+30ML).lcd mAU



PeakTable

| PDA Ch1 25 | 4mm 4mm   |          |        |         |          |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 6.622     | 21368073 | 367318 | 50.913  | 64.167   |
| 2          | 19.026    | 20601819 | 205123 | 49.087  | 35.833   |
| Total      |           | 41969893 | 572441 | 100.000 | 100.000  |

#### <Chromatogram>

D:\...KETOESTER+2-HYDROXYNAPH/SUBSTRATES/BENZYL/GV-28-1-B/CHI/GV-28-1-BCHI(OD-H+1ML+30ML).lcd mAU



1 PDA Multi 1/254nm 4nm

| PDA Ch1 254nm 4nm |           |          |        |         |          |
|-------------------|-----------|----------|--------|---------|----------|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |
| 1                 | 6.647     | 11773278 | 210076 | 97.611  | 98.607   |
| 2                 | 18.989    | 288111   | 2968   | 2.389   | 1.393    |
| Total             |           | 12061389 | 213043 | 100.000 | 100.000  |



| PDA Ch1 254nm 4nm |           |          |        |         |          |  |  |
|-------------------|-----------|----------|--------|---------|----------|--|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |  |
| 1                 | 6.189     | 12292571 | 234317 | 50.896  | 57.881   |  |  |
| 2                 | 11.382    | 11859664 | 170506 | 49.104  | 42.119   |  |  |
| Total             |           | 24152235 | 404822 | 100.000 | 100.000  |  |  |

#### <Chromatogram>

#### <Chromatogram>

DDA Ch1 254mm 4mm



| PDA CII 25 | 41011 41011 |          |        |         |          |
|------------|-------------|----------|--------|---------|----------|
| Peak#      | Ret. Time   | Area     | Height | Area %  | Height % |
| 1          | 6.153       | 23682127 | 447319 | 96.179  | 96.606   |
| 2          | 11.685      | 940951   | 15716  | 3.821   | 3.394    |
| Total      |             | 24623078 | 463035 | 100.000 | 100.000  |



#### <Chromatogram>

D:\...\Data\KETOESTER+2-HYDROXYNAPH\SUBSTRATES\Ally\IGV-28-1-C\RAC\GV-28-1-C rac (OD-H+1ML+30ML).lcd mAU

| PDA Ch1 25 | 4nm 4nm   | 1000     |        | 100.00  | 10039735 |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 5.841     | 13107367 | 255671 | 50.771  | 58.599   |
| 2          | 13.435    | 12709246 | 180637 | 49.229  | 41.401   |
| Total      |           | 25816613 | 436307 | 100.000 | 100.000  |

#### <Chromatogram>

D:/.../Data/KETOESTER+2-HYDROXYNAPH/SUBSTRATES/Ally/I/GV-28-1-C/CHI/GV-28-1-C CHI (OD-H+1ML+30ML).lcd mAU



1 PDA Multi 1/254nm 4nm

| PDA Ch1 254nm 4nm |           |          |        |         |          |  |
|-------------------|-----------|----------|--------|---------|----------|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |
| 1                 | 5.854     | 43317617 | 812407 | 98.494  | 98.807   |  |
| 2                 | 13.710    | 662515   | 9806   | 1.506   | 1.193    |  |
| Total             | 200.000   | 43980132 | 822213 | 100.000 | 100.000  |  |



| Peak# | Ret. Time | Area      | Height  | Area %  | Height % |
|-------|-----------|-----------|---------|---------|----------|
| 1     | 21.830    | 56303012  | 596272  | 48.603  | 54.672   |
| 2     | 32.241    | 59540687  | 494367  | 51.397  | 45.328   |
| Total |           | 115843699 | 1090639 | 100.000 | 100.000  |
| 104   | 154       | 124       |         |         |          |

#### <Chromatogram>

PDA Ch3 254nm 4nm



1 PDA Multi 3/254nm 4nm

| PeakTable |
|-----------|
|-----------|

| PDA Ch3 254 | 4mm 4mm   |          |        |         |          |
|-------------|-----------|----------|--------|---------|----------|
| Peak#       | Ret. Time | Area     | Height | Area %  | Height % |
| 1           | 21.994    | 373979   | 4914   | 1.905   | 3.000    |
| 2           | 32.055    | 19259073 | 158865 | 98.095  | 97.000   |
| Total       |           | 19633052 | 163779 | 100.000 | 100.000  |



<Chromatogram>

1 PDA Multi 3/254nm 4nm

PeakTable

| PDA Ch3 254 | hm 4nm    |          |        |         |          |
|-------------|-----------|----------|--------|---------|----------|
| Peak#       | Ret. Time | Area     | Height | Area %  | Height % |
| 1           | 19.149    | 26636057 | 311582 | 48.621  | 54.736   |
| 2           | 27.808    | 28146634 | 257666 | 51.379  | 45.264   |
| Total       |           | 54782691 | 569247 | 100.000 | 100.000  |

#### <Chromatogram>



1 PDA Multi 3/254nm 4nm

| PDA Ch3 25 | 4mm 4mm   |          |        |         |          |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 19.784    | 600277   | 7543   | 1.372   | 1.879    |
| 2          | 28.838    | 43139848 | 393934 | 98.628  | 98.121   |
| Total      |           | 43740125 | 401476 | 100.000 | 100.000  |



1 PDA Multi 3/254nm 4nm

<Chromatogram>

PeakTable

| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 15.374    | 20668300 | 283346 | 48.888  | 53.61    |
| 2     | 22.052    | 21608327 | 245124 | 51.112  | 46.38    |
| Total | 1         | 42276627 | 528470 | 100.000 | 100.00   |

#### <Chromatogram>



1 PDA Multi 3/254nm 4nm

| PDA Ch3 254 | nm 4nm    |          |        |         |          |
|-------------|-----------|----------|--------|---------|----------|
| Peak#       | Ret. Time | Area     | Height | Area %  | Height % |
| 1           | 15.515    | 778261   | 11974  | 1.801   | 2.468    |
| 2           | 22.068    | 42433819 | 473190 | 98.199  | 97.532   |
| Tota1       |           | 43212080 | 485164 | 100.000 | 100.000  |



1 PDA Multi 3/254nm 4nm

<Chromatogram>

PeakTable

| PDA Ch3 254 | nm 4nm    |          |        |         |          |
|-------------|-----------|----------|--------|---------|----------|
| Peak#       | Ret. Time | Area     | Height | Area %  | Height % |
| 1           | 35.604    | 10395700 | 74850  | 49.585  | 55.918   |
| 2           | 52.877    | 10569521 | 59007  | 50.415  | 44.082   |
| Total       |           | 20965221 | 133857 | 100.000 | 100.000  |

#### <Chromatogram>



| i bii cib bi | times times |          |        |         |          |
|--------------|-------------|----------|--------|---------|----------|
| Peak#        | Ret. Time   | Area     | Height | Area %  | Height % |
| 1            | 35.215      | 830428   | 7627   | 1.042   | 1.807    |
| 2            | 52.007      | 78834983 | 414375 | 98.958  | 98.193   |
| Total        |             | 79665411 | 422001 | 100.000 | 100.000  |

#### <Chromatogram>



285831

100.000

100.000

27290898

#### <Chromatogram>

Total



1 PDA Multi 1/254nm 4nm

|                   |           |          | I Cak Laoit |         |          |  |
|-------------------|-----------|----------|-------------|---------|----------|--|
| PDA Ch1 254nm 4nm |           |          |             |         |          |  |
| Peak#             | Ret. Time | Area     | Height      | Area %  | Height % |  |
| 1                 | 22.508    | 1163157  | 16741       | 2.509   | 5.465    |  |
| 2                 | 29,997    | 45193905 | 289567      | 97.491  | 94.535   |  |
| Total             |           | 46357063 | 306308      | 100.000 | 100.000  |  |

#### D.\...\KETOESTER+2-HYDROXYNAPH\SUBSTRATES\5-OCF3\GV-28-109 RAC (AD-H+1ML+20ML).lcd mAU PDA Multi 1 37,893 100-75-50-F<sub>3</sub>CO 25-3j 0 25 40 30 35 45 20 min

#### <Chromatogram>

1 PDA Multi 1/254nm 4nm

| PDA Ch1 254 | 4mm 4mm   |          |        |         |          |
|-------------|-----------|----------|--------|---------|----------|
| Peak#       | Ret. Time | Area     | Height | Area %  | Height % |
| 1           | 25.262    | 12214424 | 115252 | 49.458  | 55.965   |
| 2           | 37.893    | 12481996 | 90685  | 50.542  | 44.035   |
| Total       |           | 24696420 | 205937 | 100.000 | 100.000  |

PeakTable

#### <Chromatogram>



|             |                  |          | reakiaoic |         |          |  |
|-------------|------------------|----------|-----------|---------|----------|--|
| PDA Ch1 254 | DA Ch1 254nm 4nm |          |           |         |          |  |
| Peak#       | Ret. Time        | Area     | Height    | Area %  | Height % |  |
| 1           | 25.444           | 629427   | 6449      | 4.819   | 6.743    |  |
| 2           | 37.930           | 12432201 | 89191     | 95.181  | 93.257   |  |
| Total       |                  | 13061628 | 95641     | 100.000 | 100.000  |  |

#### <Chromatogram>



1 PDA Multi 1/254nm 4nm

PeakTable

|            |           | -       | COLLIGUIC |         |          |
|------------|-----------|---------|-----------|---------|----------|
| DA Ch1 254 | nm 4nm    |         |           |         |          |
| Peak#      | Ret. Time | Area    | Height    | Area %  | Height % |
| 1          | 14.713    | 4653664 | 71993     | 50.136  | 60.288   |
| 2          | 26.251    | 4628331 | 47422     | 49.864  | 39.712   |
| Total      |           | 9281995 | 119415    | 100.000 | 100.000  |

#### <Chromatogram>



1 PDA Multi 1/254nm 4nm

| PDA Ch1 25 | 4nm 4nm   | 10000    |        |         |          |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 14.683    | 1728479  | 27516  | 5.757   | 8.883    |
| 2          | 26.072    | 28295127 | 282253 | 94.243  | 91.117   |
| Total      |           | 30023606 | 309768 | 100.000 | 100.000  |



Height

217651

162590

380241

Area %

49.278

50.722

100.000

Height %

57.240

42.760

100.000

### HPLC profile for table 3, entry 12

<Chromatogram>

<Chromatogram>

PDA Ch1 254nm 4nm Peak#

> 2 Total

Ret. Time

23.471

34.605

Area

19750844

20329375

40080219



|             |           |          | 1 can laoic |         |          |
|-------------|-----------|----------|-------------|---------|----------|
| PDA Ch1 254 | nm 4nm    |          |             |         |          |
| Peak#       | Ret. Time | Area     | Height      | Area %  | Height % |
| 1           | 23.555    | 1103281  | 12309       | 3.346   | 4.636    |
| 2           | 34.375    | 31874459 | 253175      | 96.654  | 95.364   |
| Total       |           | 32977739 | 265484      | 100.000 | 100.000  |





#### <Chromatogram>

|   |       | -    |     |
|---|-------|------|-----|
| P | leak' | l ah | le. |
| 1 | uan.  | 1 40 | IC. |

| PDA Ch1 254 | 4nm 4nm   |          |        |         |          |
|-------------|-----------|----------|--------|---------|----------|
| Peak#       | Ret. Time | Area     | Height | Area %  | Height % |
| 1           | 15.485    | 14426583 | 187313 | 49.778  | 55.081   |
| 2           | 22.493    | 14555210 | 152753 | 50.222  | 44.919   |
| Total       |           | 28981793 | 340066 | 100.000 | 100.000  |

#### <Chromatogram>



| DA Ch1 254 | and Anna  |        | PeakTable |         |          |
|------------|-----------|--------|-----------|---------|----------|
| Peak#      | Ret. Time | Area   | Height    | Area %  | Height % |
| 1          | 15.400    | 719538 | 9548      | 80.494  | 82.795   |
| 2          | 22.301    | 174367 | 1984      | 19.506  | 17.205   |
| Total      |           | 893905 | 11532     | 100.000 | 100.000  |



#### <Chromatogram>



| Peak# | Ret. Time | Area     | Height | Area %  | Height % |  |
|-------|-----------|----------|--------|---------|----------|--|
| 1     | 12.828    | 9581504  | 132431 | 48.640  | 51.927   |  |
| 2     | 17.397    | 10117316 | 122600 | 51.360  | 48.073   |  |
| Total |           | 19698820 | 255031 | 100.000 | 100.000  |  |

<Chromatogram>



1 PDA Multi 1/220nm 4nm

| PDA Ch1 22 | 0mm 4mm   |          |        |         |          |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 12.787    | 1829096  | 24085  | 5.587   | 6.088    |
| 2          | 17.332    | 30910891 | 371491 | 94.413  | 93.912   |
| Total      |           | 32739986 | 395576 | 100.000 | 100.000  |

#### <Chromatogram>



1 PDA Multi 1/254nm 4nm

PeakTable

| PDA Ch1 254 | 1mm 4mm   |         | 100.00000000000000000000000000000000000 |         |          |
|-------------|-----------|---------|-----------------------------------------|---------|----------|
| Peak#       | Ret. Time | Area    | Height                                  | Area %  | Height % |
| 1           | 35.877    | 3069642 | 24509                                   | 49.553  | 56.879   |
| 2           | 49.405    | 3125049 | 18580                                   | 50.447  | 43.121   |
| Total       |           | 6194691 | 43089                                   | 100.000 | 100.000  |

#### <Chromatogram>



1 PDA Multi 1/254nm 4nm

| PDA Ch1 254 | ann 4mm   |          |        |         |          |
|-------------|-----------|----------|--------|---------|----------|
| Peak#       | Ret. Time | Area     | Height | Area %  | Height % |
| 1           | 34.687    | 1146058  | 10302  | 1.890   | 2.779    |
| 2           | 48.028    | 59499974 | 360364 | 98.110  | 97.221   |
| Total       |           | 60646031 | 370666 | 100.000 | 100.000  |



1 PDA Multi 1/254nm 4nm

<Chromatogram>

| PDA Ch1 25 | 411111 411111 |          | PeakTable |         |          |
|------------|---------------|----------|-----------|---------|----------|
| Peak#      | Ret. Time     | Area     | Height    | Area %  | Height % |
| 1          | 11.134        | 41555352 | 595401    | 49.910  | 54.004   |
| 2          | 14.294        | 41706012 | 507107    | 50.090  | 45.996   |
| Total      |               | 83261365 | 1102507   | 100.000 | 100.000  |

<Chromatogram>



| PDA Ch1 254nm 4nm |           |          |        |         |          |  |
|-------------------|-----------|----------|--------|---------|----------|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |
| 1                 | 11.185    | 5227677  | 66026  | 9.710   | 11.235   |  |
| 2                 | 14.220    | 48612015 | 521677 | 90.290  | 88.765   |  |
| Total             |           | 53839691 | 587703 | 100.000 | 100.000  |  |

#### <Chromatogram>



| Detector A Ch1 254nm |           |          |        |         |          |  |  |
|----------------------|-----------|----------|--------|---------|----------|--|--|
| Peak#                | Ret. Time | Area     | Height | Area %  | Height % |  |  |
| 1                    | 13.608    | 20740691 | 397729 | 46.396  | 81.925   |  |  |
| 2                    | 17.628    | 23962736 | 87750  | 53.604  | 18.075   |  |  |
| Total                |           | 44703427 | 485479 | 100.000 | 100.000  |  |  |

<Chromatogram>



1 Det.A Ch1/254nm

|   |                      |           | I        | PeakTable |         |          |  |  |
|---|----------------------|-----------|----------|-----------|---------|----------|--|--|
| Ι | Detector A Ch1 254nm |           |          |           |         |          |  |  |
|   | Peak#                | Ret. Time | Area     | Height    | Area %  | Height % |  |  |
|   | 1                    | 14.378    | 280626   | 6667      | 0.979   | 6.048    |  |  |
|   | 2                    | 17.964    | 28377583 | 103564    | 99.021  | 93.952   |  |  |
|   | Total                |           | 28658209 | 110231    | 100.000 | 100.000  |  |  |



<Chromatogram>

1 Det.A Ch1/254nm

| Deal | ĿТ | 'al- | مار |
|------|----|------|-----|
| 1 Ca | ΓI | au   | nc. |

|            |           |          | 1 can raoic |           |                       |
|------------|-----------|----------|-------------|-----------|-----------------------|
| Detector A | Ch1 254nm | 133      | 777 - 785   | 555 (MBR) | and the second second |
| Peak#      | Ret. Time | Area     | Height      | Area %    | Height %              |
| 1          | 22.698    | 20214599 | 167116      | 49.966    | 54.325                |
| 2          | 31.480    | 20241830 | 140508      | 50.034    | 45.675                |
| Total      |           | 40456429 | 307624      | 100.000   | 100.000               |

#### <Chromatogram>



1 Det.A Ch1/254nm

|                      |           |          | I Cak Laure |         |          |  |  |  |
|----------------------|-----------|----------|-------------|---------|----------|--|--|--|
| Detector A Ch1 254nm |           |          |             |         |          |  |  |  |
| Peak#                | Ret. Time | Area     | Height      | Area %  | Height % |  |  |  |
| 1                    | 22.860    | 1291064  | 11558       | 1.513   | 3.359    |  |  |  |
| 2                    | 29.929    | 84013683 | 332524      | 98.487  | 96.641   |  |  |  |
| Total                |           | 85304747 | 344082      | 100.000 | 100.000  |  |  |  |
## HPLC profile for large scale: compound 3a

## <Chromatogram>



| 4mm 4mm   |                                          |                                                                     |                                                                                                     |                                                                                                                       |
|-----------|------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Ret. Time | Area                                     | Height                                                              | Area %                                                                                              | Height %                                                                                                              |
| 18.722    | 30096299                                 | 460401                                                              | 49.475                                                                                              | 62.569                                                                                                                |
| 24.253    | 30735184                                 | 275430                                                              | 50.525                                                                                              | 37.431                                                                                                                |
|           | 60831483                                 | 735830                                                              | 100.000                                                                                             | 100.000                                                                                                               |
|           | 4nm 4nm<br>Ret. Time<br>18.722<br>24.253 | Anm   Ret. Time Area   18.722 30096299   24.253 30735184   60831483 | Anm 4mm   Ret. Time Area Height   18.722 30096299 460401   24.253 30735184 275430   60831483 735830 | Annu 4nm Area Height Area %   18.722 30096299 460401 49.475   24.253 30735184 275430 50.525   60831483 735830 100.000 |

PeakTable

## <Chromatogram>



PeakTable

| PDA Ch1 254nm 4nm |           |          |        |         |          |  |  |  |
|-------------------|-----------|----------|--------|---------|----------|--|--|--|
| Peak#             | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |
| 1                 | 18.855    | 5564547  | 84792  | 6.247   | 11.474   |  |  |  |
| 2                 | 23.358    | 83512769 | 654191 | 93.753  | 88.526   |  |  |  |
| Total             |           | 89077316 | 738982 | 100.000 | 100.000  |  |  |  |