Supplementary information of research paper of "Fabrication and testing of zirconium-based nano-particle doped activated carbon fiber for enhanced arsenic removal in water" by Dandan Zhao, Yang Yu, and J. Paul Chen

1. SEM image of NP doped ACF

The SEM image of the NP doped ACF with an impregnation solution of 0.8-g Zrbased NP is shown in Fig. S1. It can see that, the agglomerates of the CTS and Zrbase NP become large and non-uniform. In addition, the sedimentation of the Zrbased NP in the impregnation solution could be observed with an impregnation solution with 0.8-g Zr-based NP. The results indicate the dosage of the Zr-based NP is more than enough for the coating process. Thus, the dosage of the Zr-based NP for the impregnation solution should not be too high to ensure a uniform coating.

Fig. S1. SEM image of the NP doped ACF with an impregnation solution of 0.8-g Zr-based NP (magnification of 30,000).

2. L₉ (3)⁴ orthogonal array design approach

The design and results of L_9 (3)⁴ orthogonal experiment are given in Table S1.

Runs		$q_e ({ m mg/g})$			
	CTS (%)	PEG (%)	Mw of CTS	Zr (g)	
1	0.1	0.1	L	0.2	2.63
2	0.1	0.2	Μ	0.4	2.70
3	0.1	0.3	Н	0.6	0.39
4	0.2	0.1	Μ	0.6	1.16
5	0.2	0.2	Н	0.2	1.16
6	0.2	0.3	L	0.4	0.52
7	0.3	0.1	Н	0.4	4.23
8	0.3	0.2	L	0.6	9.25
9	0.3	0.3	Μ	0.2	3.15

Table S1 Results of the $L_9(3)^4$ or 8 thogonal array design approach.

3. Two tail t-test statistical analyses

		Square		
2.931	2	1.466	0.154	0.861
13.721	2	6.861	0.886	0.46
8.265	2	4.133	0.478	0.642
35.276	2	17.638	4.247	0.041
	2.931 13.721 8.265 35.276	2.931 2 13.721 2 8.265 2 35.276 2	2.931 2 1.466 13.721 2 6.861 8.265 2 4.133 35.276 2 17.638	2.93121.4660.15413.72126.8610.8868.26524.1330.47835.276217.6384.247

 Table S2 Two tail t-test statistical analyses.