# A salification-induced charge transfer effect for

# improving the resistive memory performance of azo

## derivative-based devices

Quan Liu,<sup>a</sup> Qingfeng Xu,<sup>a</sup> Huilong Dong,<sup>b</sup> Hua Li,<sup>a</sup> Dongyun Chen,<sup>a</sup> Lihua Wang,<sup>a</sup> Youyong Li<sup>b</sup> and Jianmei Lu\*<sup>a</sup>

#### **Supporting Information**



Figure S1. The <sup>1</sup>H NMR spectra of **AZOCP** in CDCl<sub>3</sub>.



Figure S2. The <sup>13</sup>C NMR spectra of **AZOCP** in CDCl<sub>3</sub>.



Figure S3. The <sup>1</sup>H NMR spectra of **CSA** in  $CDCl_3$ .



Figure S4. The <sup>1</sup>H NMR spectra of **AZOCP-CSA** in CDCl<sub>3</sub>.



Figure S5. Thermogravimetric analysis (TGA) curves of **AZOCP** and **AZOCP-CSA** with a heating rate of 20 °C min<sup>-1</sup> under a nitrogen atmosphere.



Scheme S1 The synthetic routes and molecular structures of AZOCP2 and AZOCP2-CSA.

Synthesis of 2-(dodecyloxy)-4-((4-nitrophenyl)diazenyl)benzaldehyde (T1)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) d (ppm): 10.57 (s, 1H, CHO), 8.48 (d, J = 3.2 Hz, 1H, ArH), 8.38 (d, J = 11.6 Hz, 2H, ArH), 8.20 (dd, J = 12.0 Hz, J = 3.6 Hz, 1H, ArH), 8.02 (d, J = 12.0 Hz, 2H, ArH), 7.15 (d, J = 11.6 Hz, 1H, ArH), 4.22 (m, 2H, CH<sub>2</sub>), 1.92 (m, 2H, CH<sub>2</sub>), 1.41 (m, 18H, CH<sub>2</sub>), 0.88 (t, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): d (ppm): 189.1 (C=O), 164.2 (ArC), 155.6 (ArC), 148.6 (ArC), 146.1 (ArC), 130.5 (ArC), 125.2 (ArC), 124.8 (ArC), 124.1 (ArC), 123.4 (ArC), 113.0 (ArC), 69.4 (CH<sub>2</sub>), 31.9 (CH<sub>2</sub>), 29.63 (CH<sub>2</sub>), 29.61 (CH<sub>2</sub>), 29.56 (CH<sub>2</sub>), 29.52 (CH<sub>2</sub>), 29.34 (CH<sub>2</sub>), 29.30 (CH<sub>2</sub>), 29.0 (CH<sub>2</sub>), 26.0 (CH<sub>2</sub>), 22.7 (CH<sub>2</sub>), 14.1 (CH<sub>3</sub>). HRMS: calcd for  $C_{25}H_{33}N_3O_4$  [M + H]<sup>+</sup> 440.2549, found 440.2552.

#### Synthesis of 3-(2-(dodecyloxy)-4-((4-nitrophenyl)diazenyl)phenyl)-1-(pyridin-4-yl)prop-2-en-1-one (AZOCP2)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) d (ppm): 8.81 (m, 1H, ArH), 8.58 (m, 1H, ArH), 8.24 (m, 3H, ArH), 7.60 (m, , 6H, ArH), 6.86 (s, 2H, ArH), 4.12 (m, 2H, CH<sub>2</sub>), 2.02 (m, 2H, CH<sub>2</sub>), 1.38 (m, 18H, CH<sub>2</sub>), 0.88 (t, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): d (ppm): 192.7 (C=O), 159.9 (ArC), 159.4 (ArC), 155.6 (ArC), 150.4 (ArC), 148.2 (ArC), 146.2 (ArC), 135.4 (ArC), 129.2 (ArC), 124.7 (ArC), 124.6 (ArC), 123.1 (ArC), 120.1 (ArC), 112.2 (ArC), 111.4 (ArC), 91.3 (CH=CH), 69.5 (CH<sub>2</sub>), 31.9 (CH<sub>2</sub>), 29.8 (CH<sub>2</sub>), 29.7 (CH<sub>2</sub>), 29.6 (CH<sub>2</sub>), 29.5 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 29.3 (CH<sub>2</sub>), 29.0 (CH<sub>2</sub>), 26.1 (CH<sub>2</sub>), 22.7 (CH<sub>2</sub>), 14.1 (CH<sub>3</sub>). HRMS: calcd for  $C_{32}H_{38}N_4O_4$  [M + H]<sup>+</sup> 543.2971, found 543.2481.



Figure S6 Current–voltage (I–V) characteristics of Au/AZOCP2/ITO and Au/AZOCP2-CSA/ITO memory device(a and b); the endurance cycles of Au/ AZOCP2/ITO and Au/AZOCP2-CSA /ITO memory device under a constant -1.0 and the effect of time stress of V (c d) and retention (e and f).

|        | HOMO (eV) | LUMO (eV) | E <sub>gap</sub> (eV) | HOMO (eV) | LUMO (eV) | E <sub>gap</sub> (eV) |
|--------|-----------|-----------|-----------------------|-----------|-----------|-----------------------|
|        | (simul)   |           | (simul)               | (exper)   |           | (exper)               |
|        |           | (simul)   |                       |           | (exper)   |                       |
| AZOCP  | -4.76     | -3.16     | 1.60                  | -5.24     | -3.02     | 2.22                  |
| AZOCP- |           | -6.47     | 0.36                  | -5.30     | -3.17     | 2.13                  |
| CSA    | -6.83     |           |                       |           |           |                       |

**Table S1.** The HOMO orbital, LUMO orbital and energy gap ( $E_{gap}$ ) from DFT simulation result and experimental data of **AZOCP** and **AZOCP-CSA**.