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Fig. S1 (a) Changes in the UV-vis spectra of receptor 1 (10 M) upon addition of Cu2+ (1 

equiv) and Hg2+ (1 equiv), respectively, in DMSO/bis-tris buffer (8/2, v/v). The bathochromic 

shift of 1-Cu2+ complex might be explained through the internal charge transfer (ICT) and 

ligand-to-metal charge-transfer (LMCT) in the molecule, which has the push-pull effect of the 

electron-donating and the electron-withdrawing group. Therefore, 1-Cu2+ complex showed a 

color change, whereas 1-Hg2+ complex did not. (b) The color changes of 1 (30 μM) upon the 

addition of Cu2+ (1 equiv) and Hg2+ (1 equiv), respectively, in DMSO/bis-tris buffer (8/2, v/v).
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Fig. S2 Job plot for the binding of 1 with Hg2+. Absorbance at 385 nm was plotted as a function 

of the molar ratio [Hg2+]/([1] + [Hg2+]). The total concentrations of mercury ions with receptor 

1 were 30 μM.
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Fig. S3 Positive-ion electrospray ionization mass spectrum of 1 (100 µM) upon addition of 1 

equiv of Hg(NO3)2.
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Fig. S4 Li’s equation plot (absorbance at 382 nm) of 1, assuming 1:2 stoichiometry for 
association between Hg2+ and 1. ‘Ct’ means the concentration of 1, and ‘a’ does [(Ax-Amax)/(A0-
Amax)].
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Fig. S5 Determination of the detection limit based on change in the ratio (absorbance at 453 
nm) of 1 (10 μM) with Hg2+.
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Fig. S6 Frontier molecular orbitals and their energies of 1 and Hg2+-2·1 complex. 
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[Cys]/([Hg2+-21]+[Cys])

Fig. S7 Job plot for the binding of Hg2+-2·1 with Cys. Absorbance at 382 nm was plotted as a 

function of the molar ratio [Cys]/([Hg2+-2·1] + [Cys]). The total concentrations of Cys with 

Hg2+-2·1 were 10 μM.
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Fig. S8 Positive-ion electrospray ionization mass spectrum of Hg2+-2·1 (100 µM) upon 

addition of 1 equiv of Cys.
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Fig. S9 Benesi-Hildebrand plot (absorbance at 382 nm) of 1, assuming a 1:1 stoichiometry for 
association between 1 and Hg2+.
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Fig. S10 Determination of the detection limit based on change in the ratio (absorbance at 453 
nm) of Hg2+-2·1 (10 μM) with Cys.
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Fig. S11 Fluorescence spectral changes of Hg2+-2·1 in the presence of different concentrations 

of GSH in DMSO/bis-tris buffer (8/2, v/v). Inset: Fluorescence intensity at 453 nm versus the 

number of equiv of GSH added.
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Fig. S12 Absorption spectral changes of Hg2+-2·1 after addition of increasing amounts of GSH 

in DMSO/bis-tris buffer (8/2, v/v). Inset: Absorption at 382 nm versus the number of equiv of 

GSH added.
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[GSH]/([Hg2+-21]+[GSH])

Fig. S13 Job plot for the binding of Hg2+-2·1 with Cys. Absorbance at 382 nm was plotted as 
a function of the molar ratio [GSH]/([Hg2+-2·1] + [GSH]). The total concentrations of Cys with 
Hg2+-2·1 were 10 μM.
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Fig. S14 Benesi-Hildebrand plot (absorbance at 382 nm) of 1, assuming a 1:1 stoichiometry 
for association between Hg2+-2·1 and GSH.
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Fig. S15 Determination of the detection limit based on change in the ratio (absorbance at 453 
nm) of Hg2+-2·1 (10 μM) with GSH.
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Fig. S16 Competitive selectivity of Hg2+-2·1 toward GSH (2 equiv) in the presence of other 
amino acids (2 equiv) in DMSO/bis-tris buffer (8/2, v/v).
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Fig. S17 (a) Changes in the UV-vis spectra of 1 (10 M), 1-Hg2+ (1 equiv), 1-Hg2+-Cu2+ (1 

equiv), 1-Hg2+-Cu2+ (1 equiv)-Cys (13 equiv), and 1-Hg2+-Cu2+ (1 equiv)-GSH (13 equiv), 

respectively. (b) Color changes of 1 (10 μM), 1-Hg2+ (1 equiv), 1-Hg2+-Cu2+ (1 equiv), 1-Hg2+-
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Cu2+ (1 equiv)-Cys (13 equiv), and 1-Hg2+-Cu2+ (1 equiv)-GSH (13 equiv), respectively.
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Fig. S18 Recovery tests of 1 with (a) 1-Cu2+ (0.5 equiv) complex and (b) 1-Hg2+ (0.5 equiv) 
complex in presence of I- in DMSO/bis-tris buffer (8/2, v/v).


