Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Sequential detection of mercury (II) and thiol-containing amino acids by a fluorescent chemosensor

Ga Rim You, Sun Young Lee, Jae Jun Lee, Yong Sung Kim, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr

(a)

Fig. S1 (a) Changes in the UV-vis spectra of receptor **1** (10 μ M) upon addition of Cu²⁺ (1 equiv) and Hg²⁺ (1 equiv), respectively, in DMSO/bis-tris buffer (8/2, v/v). The bathochromic shift of **1**-Cu²⁺ complex might be explained through the internal charge transfer (ICT) and ligand-to-metal charge-transfer (LMCT) in the molecule, which has the push-pull effect of the electron-donating and the electron-withdrawing group. Therefore, **1**-Cu²⁺ complex showed a color change, whereas **1**-Hg²⁺ complex did not. (b) The color changes of **1** (30 μ M) upon the addition of Cu²⁺ (1 equiv) and Hg²⁺ (1 equiv), respectively, in DMSO/bis-tris buffer (8/2, v/v).

Fig. S2 Job plot for the binding of 1 with Hg²⁺. Absorbance at 385 nm was plotted as a function of the molar ratio $[Hg^{2+}]/([1] + [Hg^{2+}])$. The total concentrations of mercury ions with receptor 1 were 30 μ M.

Fig. S3 Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1 equiv of Hg(NO₃)₂.

Fig. S4 Li's equation plot (absorbance at 382 nm) of 1, assuming 1:2 stoichiometry for association between Hg²⁺ and 1. 'Ct' means the concentration of 1, and 'a' does $[(A_x-A_{max})/(A_0-A_{max})]$.

Fig. S5 Determination of the detection limit based on change in the ratio (absorbance at 453 nm) of 1 (10 μ M) with Hg²⁺.

Fig. S6 Frontier molecular orbitals and their energies of 1 and $Hg^{2+}-2\cdot 1$ complex.

Fig. S7 Job plot for the binding of Hg²⁺-2·1 with Cys. Absorbance at 382 nm was plotted as a function of the molar ratio [Cys]/([Hg²⁺-2·1] + [Cys]). The total concentrations of Cys with Hg²⁺-2·1 were 10 μ M.

Fig. S8 Positive-ion electrospray ionization mass spectrum of Hg²⁺-2·1 (100 μ M) upon addition of 1 equiv of Cys.

Fig. S9 Benesi-Hildebrand plot (absorbance at 382 nm) of **1**, assuming a 1:1 stoichiometry for association between **1** and Hg^{2+} .

Fig. S10 Determination of the detection limit based on change in the ratio (absorbance at 453 nm) of Hg²⁺-2·1 (10 μ M) with Cys.

Fig. S11 Fluorescence spectral changes of $Hg^{2+}-2\cdot 1$ in the presence of different concentrations of GSH in DMSO/bis-tris buffer (8/2, v/v). Inset: Fluorescence intensity at 453 nm versus the number of equiv of GSH added.

Fig. S12 Absorption spectral changes of $Hg^{2+}-2\cdot 1$ after addition of increasing amounts of GSH in DMSO/bis-tris buffer (8/2, v/v). Inset: Absorption at 382 nm versus the number of equiv of GSH added.

Fig. S13 Job plot for the binding of Hg²⁺-2·1 with Cys. Absorbance at 382 nm was plotted as a function of the molar ratio [GSH]/([Hg²⁺-2·1] + [GSH]). The total concentrations of Cys with Hg²⁺-2·1 were 10 μ M.

Fig. S14 Benesi-Hildebrand plot (absorbance at 382 nm) of **1**, assuming a 1:1 stoichiometry for association between $Hg^{2+}-2\cdot 1$ and GSH.

Fig. S15 Determination of the detection limit based on change in the ratio (absorbance at 453 nm) of Hg²⁺-2·1 (10 μ M) with GSH.

Fig. S16 Competitive selectivity of $Hg^{2+}-2\cdot 1$ toward GSH (2 equiv) in the presence of other amino acids (2 equiv) in DMSO/bis-tris buffer (8/2, v/v).

Fig. S17 (a) Changes in the UV-vis spectra of **1** (10 μ M), **1**-Hg²⁺ (1 equiv), **1**-Hg²⁺-Cu²⁺ (1 equiv), **1**-Hg²⁺-Cu²⁺ (1 equiv)-Cys (13 equiv), and **1**-Hg²⁺-Cu²⁺ (1 equiv)-GSH (13 equiv), respectively. (b) Color changes of **1** (10 μ M), **1**-Hg²⁺ (1 equiv), **1**-Hg²⁺-Cu²⁺ (1 equiv), **1**-Hg²⁺-Cu²⁺-Cu²⁺ (1 equiv), **1**-Hg²⁺-Cu²⁺-C

(a)

Cu²⁺ (1 equiv)-Cys (13 equiv), and 1-Hg²⁺-Cu²⁺ (1 equiv)-GSH (13 equiv), respectively.

(a)

(b)

Fig. S18 Recovery tests of 1 with (a) $1-Cu^{2+}(0.5 \text{ equiv})$ complex and (b) $1-Hg^{2+}(0.5 \text{ equiv})$ complex in presence of I⁻ in DMSO/bis-tris buffer (8/2, v/v).