A novel functional group difference-based selective etching strategy for the synthesis of hollow organic silica nanospheres

Fanlong Zeng,^a Lianxi Chen,*^a Jie Li,^{ab} Xinshan Ye,^c Huogen Yu,^a Zhenhui Liu^a

^a School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China. E-mail: <u>clx@whut.edu.cn</u>.

^b School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China. ^c Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Bejing, 100191, P. R. China.

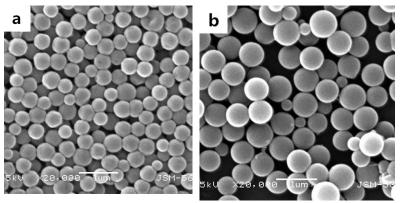


Fig. S1. Typical SEM images of the initial (a) VTES@TCPTES by hydrothermal treatment and (b) TEOS@TCPTES by hydrothermal treatment, respectively.

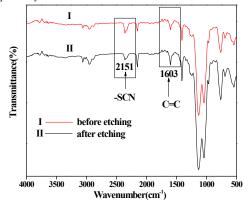


Fig. S2. Typical SEM images of the initial VTES@TCPTES by hydrothermal treatment (I) and VTES@TCPTES by hydrothermal treatment in Na₂CO₃ solution at 50 °C for 10 h, respectively.

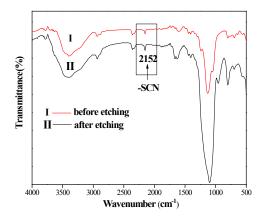


Fig. S3. Typical SEM images of (I) the initial TEOS@TCPTES by hydrothermal treatment and (II) TEOS@TCPTES by hydrothermal treatment in Na₂CO₃ solution at 50 °C for 10 h, respectively.