Supporting Information

Self-assembly of sodium and potassium betulinates into hydro- and organo-gels: Entrapment and removal studies of fluorophores and synthesis of gel-gold nanoparticle hybrid materials

Braja Gopal Bag,* Shib Shankar Dash

Department of Chemistry and Chemical Technology, Vidyasagar University,

Midnapore 721102, West Bengal, India

Email: braja@mail.vidyasagar.ac.in

Table of Contents	Pages
1. Figure S1 and S2: Optical micrograph images of salts 2 and 3	S3
2. Figure S3: SEM images of dried self-assemblies of 2	S4
3. Table S1: Thermodynamic parameters of sodium betulinate 2	S5
4. Figure S4: In K vs 1/T (K) plot of 2 and 3	S6
5. Figure S5 and S6: FTIR images of 1, 2 and 3	S7
6. Figure S7: POM images of 3 loaded with Rhodamine B	S8
7. Table S8: Fluorescence Emission spectra of potassium betulinate 3	S8
8. Figure S9: UV-visible spectra obtained during dye removal studies	S9
9. Figure S10: Structure of the chemicals present in the bark extract of Ziziphus jujube	e S10
10. ¹ H and ¹³ C NMR of sodium betulinate 2	S11
11. ¹ H and ¹³ C NMR of potassium betulinate 3	S12

Figure S1: Optical micrographs of potassium betulinate **3:** (a, b) 1.67% w/v in water; (c) 2.8% w/v in EG-water (1:1v/v) and (d) 1.9% w/v in DMF-water (1:1 v/v)

Figure S2: Optical micrographs of sodium betulinate 2 (2.1% w/v) in EG-water (1:1 v/v)

Figure S3: SEM images of dried self-assemblies prepared from a hydrogel of sodium betulinate 2 (0.71 % w/v).

Calculation of thermodynamic Parameters:

The thermoreversible melting of a gel can be expressed as:

Gel 🔁 liquid

The equilibrium constant can be expressed as:

K = [Gelator]/ [Gel]

Assuming unit activity of the gel, the equilibrium constant can be expressed as:

K = [Gelator]

The Gibbs free energy change during gel melting can be expressed as:

 ΔG° = - RT InK = ΔH° - T ΔS° , Hence, InK = - $\Delta H^{\circ}/R$. (1/T) + $\Delta S^{\circ}/R$

Table S1: Thermodynamic parameters (ΔH° , ΔS° , ΔG°) at 298 °K of the sodium betulinate gel melting in different liquids.

Liquids	$\Delta \mathrm{H}^{\mathrm{o}}\mathrm{kJ/mol}$	$\Delta S^{\circ} J/mol/^{\circ} K$	$\Delta G^{\circ} kJ/mol$
DMSO-water	76.01	202.36	15.71
DMF-water	58.71	154.39	12.7

The gel melting temperature (T_{gel}) increases with increasing concentration of the "solutes". A plot of ln K vs 1/T allowed us to calculate the thermodynamic parameters. Representative plots for gel in DMSO-water (1:1v/v) and DMF-water (1:1v/v) for both **2** and **3** were given in the figure below:

Figure S4: In K vs 1/T (K) plot of (A) **2** in DMSO-water; (B) **2** in DMF-water; (C) **3** in DMSO-water and (D) **3** in DMF-water.

Figure S5: FTIR spectra (a) powder sample of betulinic acid **1**; (b) dried self-assemblies prepared from a hydrogel of **2** and (c) powder sample of **2**.

Figure S6: FTIR spectra (a) powder sample of betulinic acid **1**; (b) dried self-assemblies prepared from a hydrogel of **3** and (c) powder sample of **3**.

Epifluorescence Microscopy: The epifluorescence microscopy images revealed the entrapment of rhodamine B on the self-assemblies of potassium betulinate **3** in water.

Figure S7: (a-b) Self-assemblies of potassium betulinate **3** loaded with rhodamine B in water: (a) under normal light; (b) under fluorescence light.

Figure S8: Fluorescence Emission Spectra: (a) rhodamine-B (c = 0.03 mM) in phosphate buffer (0.01 M, pH = 7.2); (b) in the presence of a hydrogel obtained from potassium betulinate **3** after 4 hours. Upon excitation at 554 nm (rhodamine B), emission spectra appeared at 581.4 nm. Decrease of fluorescence intensity with time indicated the removal of rhodamine-B dye from the aqueous buffer solution.

(b) 3.9

0 h

24 h

(a)

3.9

Figure S9: (a, b) UV-visible spectroscopy of CF solution kept in contact with the hydrogels of sodium betulinate **2** (2.5% w/v) and potassium betulinate **3** (2.5% w/v) respectively; (c, d) UV-visible spectroscopy of NR solution kept in contact with the hydrogels of sodium betulinate **2** (2.5% w/v) and potassium betulinate **3** (2.5% w/v) respectively, Inset: *left:* structure of the dye molecules, *right*: photograph of vials at different times.

Figure S10: Probable structures of compounds present in the bark extract of *Ziziphus jujube,* as evident from the mass spectral analysis.

