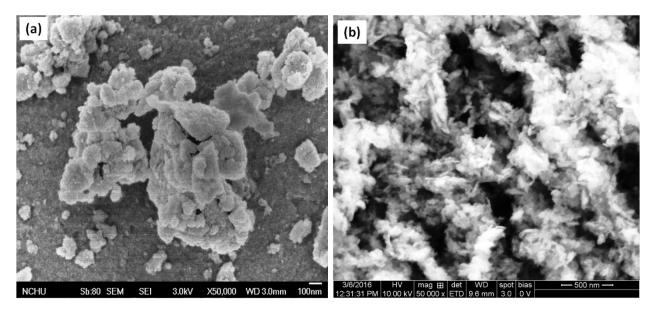
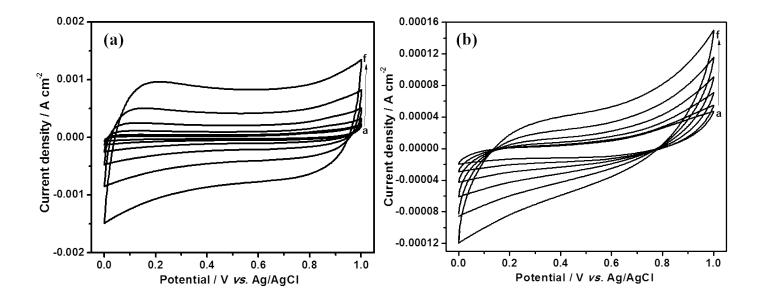
Supporting Information

Hybrid SnO₂-Co₃O₄ nanocubes prepared via CoSn(OH)₆ intermediate through sonochemical route for Energy Storage Applications


Balasubramaniam Gnana Sundara Raj^a, Jerry J Wu^b, Abdullah M. Asiri^c, Sambandam Anandan^{a,*}

^aNanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015, India.


^bDepartment of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan. ^cThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21413, P.O. Box 80203, Saudi Arabia.

*To whom correspondence should be addressed: E-mail: sanand@nitt.edu; sanand99@yahoo.com; Tel.: +91-431-2503639; Fax: +91 431 2500133.

Figure S1. FESEM images of (a) bare SnO_2 and (b) pristine Co_3O_4

Figure S2. CV curve for (a) intermediate CoSn(OH)₆ and (b) bare SnO₂ at different scan rates 5 mV s⁻¹, 10 mV s⁻¹, 20 mV s⁻¹, 40 mV s⁻¹, 80 mV s⁻¹, and 160 mV s⁻¹ in the potential range between 0 to +1 V vs. Ag/AgCl in aqueous solution of 1 M Na₂SO₄ as electrolyte (a-f).

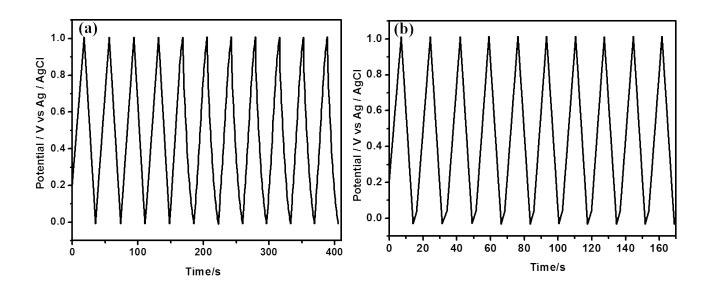


Figure S3. Charge–discharge cycles of (a) intermediate $CoSn(OH)_6$ and (b) bare SnO_2 at a current density of 0.5 mA cm⁻²

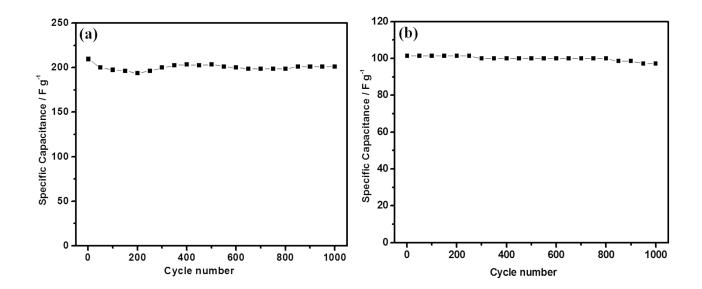


Figure S4. Cycling behavior of (a) intermediate $CoSn(OH)_6$ and (b) bare SnO_2