Supporting Information

Intracellular Thiol-Responsive Nanosized Drug Carriers Self-assembled by Poly(ethylene glycol)-b-Poly(ε-caprolactone)-b-Poly(ethylene glycol) Having Multiple

Bioreducible Disulfide Linkages in Hydrophobic Block

Seung Yeon Moon^{a,†}, Yeon Su Choi^{a,†}, Jung-Kyo Cho^a, Minjong Yu^b, Eunji Lee^b, Kang Moo

Huh^c, Don Haeng Lee^{d,e}, Jong-Ho Kim^{f,*}, Han Chang Kang^{a,*}

^a Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheonsi, Gyeonggi-do 420-743, Republic of Korea

^b Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea

^c Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea

^d Division of Gastroenterology and Hepatology, Department of Internal Medicine, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon 400-712, Republic of Korea

^e Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, 9 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea

^f Department of Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 130-701, Republic of Korea

[†] SYM and YSC equally contributed this work.

* Co-correspondence to:

Professor Han Chang Kang, Ph.D., Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea Tel: +82-2-2164-6533; Fax: +82-2-2164-4059 E-mail address: hckang@catholic.ac.kr

Professor Jong-Ho Kim, Ph.D., Department of Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 130-701, Republic of Korea Tel: +82-2-961-9312-; Fax: +82-2-966-3885 E-mail address: jonghokim@khu.ac.kr

(b)

(a)

Figure S1. ¹H-NMR spectra of (a) the synthesized RSPCL_{1.2} polymers and mPEG-RSPCL_{1.2} copolymers, (b) the commercially-available PCL₅-COOH polymers and the synthesized mPEG-PCL₅ copolymers, and (c) the synthesized ssPCLss polymers and mPEG-ssPCL₅ copolymers in CDCl₃.

Figure S2. GPC chromatograms of (a) the synthesized RSPCL_{1.2} polymers and mPEG-RSPCL_{1.2} copolymers, (b) the commercially-available PCL₅-COOH polymers and the synthesized mPEG-PCL₅ copolymers, and (c) the synthesized ssPCL₅ss polymers and mPEG-ssPCL₅ copolymers in THF.

(a)

Figure S3. Thiol-induced MW change of mPEG-RSPCL_{1.2} copolymers in drug-free mPEG-RSPCL_{1.2} NPs. The degradation experiment was carried out at 37 °C and was analyzed by GPC chromatograms. ($[mPEG-RSPCL_{1.2} NP] = 0.25 mg/mL$, [DTT] = 10 mM)

Figure S4. Thiol-induced size (intensity average) change of various NPs such as mPEG-PCL₅ NPs, mPEG-ssPCL₅ NPs, mPEG-RSPCL_{0.5} NPs and mPEG-RSPCL_{1.2} NPs in DTT-containing DPBS (50 mM, pH 7.4). The degradation experiment was performed at 37 °C for 2 hrs. ([Polymer] = 0.25 mg/mL, [DTT] = 10 mM)

Figure S5. Size change of mPEG-RSPCL_{0.5} NPs was monitored as a function of DTT concentration (1 μ M-100 mM) for 2 hr at RT (n=3).

Figure S6. In vitro cytotoxicity of drug-free mPEG-PCL₅ NPs and mPEG-ssPCL₅ NPs in HeLa and HepG2 cells 48 hr post-treatment. Various concentrations of NPs were used to treat the cells for 48 hr, and the data are expressed as the mean \pm standard error of the mean (SEM) (n=12).

Figure S7. CryoTEM images of drug-free mPEG-RSPCL_{1.2} NPs and drug-loaded mPEG-RSPCL_{1.2} NPs.

Figure S8. Drug loading content (DLC, %) and efficiency (DLE, %) of DOX·HCl-mPEG-RSPCL_{0.5} NPs as a function of temperature (n=3).