Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

ESI to accompany:

Combining phosphonic acid-functionalized anchoring ligands with asymmetric ancillary ligands in bis(diimine)copper(I) dyes for dye-sensitized solar cells

Annika Büttner, Sven Y. Brauchli, Raphael Vogt, Edwin C. Constable and Catherine E. Housecroft*

Syntheses of ligands 1-6

Compound 1. Compound **1** is prepared by deprotection of the corresponding diethylester and this step has previously been carried out using concentrated aqueous HCl and glacial acetic acid.¹ A more convenient method is as follows. Tetraethyl ((6,6'-dimethyl-[2,2'bipyridine]-4,4'-diyl)bis(4,1-phenylene))bis(phosphonate) (25 mg, 0.0341 mmol) and an excess of Me₃SiBr (0.09 mL, 104 mg, 0.682 mmol, 20 eq.) were dissolved in dry CH₂Cl₂ (4 mL) and the solution was stirred for 22 h at room temperature. The reaction mixture was quenched with water (\approx 20 mL). An off-white solid precipitated which was collected by filtration and washed with water (\approx 10 mL). The organic phase was extracted with water (2 × 15 mL). The combined aqueous phases were concentrated under reduced pressure, and then toluene (50 mL) was added and solvent then removed. The residue was dried under high vacuum, yielding **1** as an off-white solid (12.4 mg, 0.0199 mmol, 58.6%). Spectroscopic data matched those reported.¹

Compound 3. The preparation of **3** has been reported,² but we find the following route more convenient. Compound **3a** (1.89 g, 9.03 mmol) and 1-(2-oxopropyl)pyridinium chloride (1.55 g, 9.03 mmol) were dissolved in EtOH (40 mL). A solution of NH₄OAc (20.9 g, 271 mmol) in EtOH (40 mL) was then added, and the reaction mixture was heated at reflux overnight (\approx 20 h). Solvent was then removed *in vacuo* and the residue dissolved in CH₂Cl₂, then extracted with CH₂Cl₂/H₂O (3 × 100 mL) and the combined extracts dried over MgSO₄. After separation from MgSO₄ and removal of solvent, a brown oil was obtained which was purified by column chromatography (alumina, CH₂Cl₂). **3** was obtained as a sticky, off-white solid (1.77 g, 7.18 mmol, 79.5%). 270 MHz ¹H NMR spectroscopic data have previously been reported.² ¹H NMR (500 MHz, CD₃CN) δ / ppm 8.67 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H, H^{A6}), 8.49 (m, 1H, H^{B3}), 8.45 (ddd, *J* = 8.0, 1.1, 1.1 Hz, 1H, H^{A3}), 7.89 (m, 1H, H^{A4}), 7.79 (m, 2H, H^{C2}), 7.54 (m, 3H, H^{C3+B5}), 7.48 (m, 1H, H^{C4}), 7.39 (m, 1H, H^{A5}), 2.64 (s, 3H, H^{Me}). ¹³C NMR (126 MHz, CD₃CN) δ / ppm 159.7 (C^{B6}), 157.0 (C^{A2/B2}), 156.9 (C^{A2/B2}), 150.2 (C^{A6}), 150.15 (C^{B4}), 139.3 (C^{C1}), 138.0 (C^{A4}), 130.1 (C^{C3}), 130.0 (C^{C4}), 127.9 (C^{C2}), 124.9 (C^{A5}), 122.1 (C^{B5}), 121.4 (C^{A3}), 116.4 (C^{B3}), 24.7 (C^{Me}).

Compound 4. Compound **4a** (2.00 g, 6.94 mmol), 1-(2-oxopropyl)pyridinium chloride (1.19 g, 6.94 mmol) and NH₄OAc (16.1 g, 208 mmol) were suspended in EtOH (120 mL). The reaction mixture was heated at reflux overnight (\approx 20 h). As the solution was allowed to cool to room temperature, a precipitate formed. Compound **4** was separated by

filtration, washed with cold MeOH and was isolated as an off-white solid (608 mg, 1.87 mmol, 26.8%). M.p. 125.0°C. ¹H NMR (500 MHz, CD₃CN) δ / ppm 8.67 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H, H^{A6}), 8.45 (overlapping m, 2H, H^{B3+A3}), 7.90 (td, *J* = 7.8, 1.8 Hz, 1H, H^{A4}), 7.70 (overlapping m, 4H, H^{C2+C3}), 7.52 (d, *J* = 1.4 Hz, 1H, H^{B5}), 7.39 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H, H^{A5}), 2.64 (s, 3H, H^{Me}). ¹³C NMR (126 MHz, CD₃CN) δ / ppm 160.0 (C^{B6}), 157.0 (C^{B2}), 156.8 (C^{A2}), 150.2 (C^{A6}), 148.9 (C^{B4}), 138.5 (C^{C1}), 138.0 (C^{A4}), 133.2 (C^{C3}), 129.9 (C^{C2}), 125.0 (C^{A5}), 123.8 (C^{C4}), 121.9 (C^{B5}), 121.7 (C^{A3}), 116.3 (C^{B3}), 24.7 (C^{Me}). ESI-MS *m/z* 325.0 [M + H]⁺ (calc. 325.0). Found C 62.90, H 4.02, N, 8.57; C₁₇H₁₃BrN₂ requires C 62.79, H 4.03, N, 8.61%.

Compound 5. Compound **5a** (2.50 g, 10.4 mmol) and 1-(2-oxopropyl)pyridinium chloride (1.79 g, 10.4 mmol) were dissolved in EtOH (50 mL). Then a solution of NH₄OAc (24.2 g, 313 mmol) in EtOH (50 mL) was added. The reaction mixture was heated at reflux overnight (\approx 20 h), then allowed to cool to room temperature. The product precipitated and **5** was collected by filtration, washed with cold MeOH and isolated as an off-white solid (928 mg, 3.35 mmol, 32.3%). M.p. 95.2 °C. ¹H NMR (500 MHz, CD₃CN) δ / ppm 8.67 (ddd, *J* = 4.7, 1.8, 0.9 Hz, 1H, H^{A6}), 8.44 (overlapping m, 2H, H^{A3+B3}), 7.89 (td, *J* = 7.7, 1.8 Hz, 1H, H^{A4}), 7.75 (m, 2H, H^{C2}), 7.50 (d, *J* = 1.5 Hz, 1H, H^{B5}), 7.38 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H, H^{A5}), 7.06 (m, 2H, H^{C3}), 3.85 (s, 3H, H^{OMe}), 2.62 (s, 3H, H^{Me}). ¹³C NMR (126 MHz, CD₃CN) δ / ppm 161.6 (C^{C4}), 159.6 (C^{B6}), 157.1 (C^{A2}), 156.8 (C^{B2}), 150.2 (C^{A6}), 149.6 (C^{B4}), 137.9 (C^{A4}), 131.4 (C^{C1}), 129.2 (C^{C2}), 124.8 (C^{A5}), 121.7 (C^{A3}), 121.4 (C^{B5}), 115.8 (C^{B3}), 115.5 (C^{C3}), 56.1 (C^{OMe}), 24.7 (C^{Me}). ESI-MS *m*/*z* 277.1 [M + H]⁺ (calc. 277.1). Found C 78.11, H 5.86, N, 10.02; C₁₈H₁₆N₂O requires C 78.24, H 5.84, N, 10.14%.

Compound 6. Compound **6a** (2.50 g, 8.35 mmol), 1-(2-oxopropyl)pyridinium chloride (1.43 g, 8.35 mmol) and NH₄OAc (19.7 g, 251 mmol) were suspended in EtOH (120 mL). The reaction mixture was heated to reflux, and changed from a yellow suspension to an orange, then red solution. After heating at reflux was continued for 2 days, the mixture was cooled to room temperature and then stirred for a further 36 h. Solvent was removed under reduced pressure and the residue was purified by column chromatography (alumina, CH_2Cl_2). Compound **6** was initially isolated as an orange-red oil which crystalized after standing for 24 h (2.32 g, 6.89 mmol, 82.5%). M.p. 98.0 °C. ¹H NMR (500 MHz, CD₃CN) δ / ppm 8.67 (ddd, *J* = 4.7, 1.8, 0.9 Hz, 1H, H^{A6}), 8.43 (overlapping m, 2H, H^{A3+B3}), 7.88 (td, *J* = 7.7, 1.8 Hz, 1H, H^{A4}), 7.53 (d, *J* = 1.4 Hz, 1H, H^{B5}), 7.38 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H, HA5), 7.01 (s, 2H, H^{C2}), 3.90 (s, 6H, H^{OMe-C3}), 3.78 (s, 3H, H^{OMe-C4}), 2.63 (s, 3H, H^{Me}). ¹³C NMR (126 MHz, CD₃CN) δ / ppm 159.5 (C^{B6}), 157.1 (C^{A2}), 156.9 (C^{B2}), 154.8 (C^{C3}), 150.2 (C^{B4}), 150.15 (C^{A6}), 139.9 (C^{C4}), 138.0 (C^{A4}), 135.1 (C^{C1}), 124.9 (C^{A5}), 122.2 (C^{B5}), 121.8 (CA3), 116.4 (CB3), 105.4 (CC2), 60.9 (COMe-C4), 56.9 (COMe-C3), 24.7 (CMe). ESI-MS m/z 337.1 [M + H]⁺ (calc. 337.2). Found C 71.28, H 6.02, N, 8.26; C₂₀H₂₀N₂O₃ requires C 71.41, H 5.99, N, 8.33%.

- 1 S. Y. Brauchli, F. J. Malzner, E. C. Constable and C. E. Housecroft, *RSC Adv.*, 2015, **5**, 48516.
- 2 K. Shibata, I. Katsuyama, H. Izoe, M. Matsui and H. Muramatsu, J. Heterocyclic Chem., 1993, **30**, 277.

Fig. S1. *J–V* curves for sets of four DSCs containing the dyes (a) [Cu(2)(3)]⁺, (b) [Cu(2)(4)]⁺ and (c) [Cu(2)(5)]⁺ measured on the day of cell assembly to confirm performance reproducibility.