Exploring the Low-lying Structures of Au_n(CO)⁺ (n = 1-10): Adsorption and Stretching Frequencies of CO on Various Coordination Sites

Jie Wang, ^{†,‡,§} Qing-Bo Yan, [‡] Jun Ma,[†] Xizi Cao,[†] Xiaopeng Xing^{†,*} Xuefeng Wang[†]

[†] Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China

[‡]College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

[§]CHINALCO Research Institute of Science and Technology, Southern District of Future Science & Technology Park, Beijing, 102209, China

^{*}Authors to whom correspondence should be addressed. Tel.: +86-021-65981097; Fax: +86-021-65981097; Email: xingxp@tongji.edu.cn

The low lying structures of $Au_6(CO)^+$. All structures were optimized at level I and the relative energies were recalculated at level II. Their electronic states and geometries are indicated. The numbers inside and outside of the parentheses indicate the relative energies from level I and level II, respectively. The structures with a terminal-bonded CO and a bridge-bonded CO are sequenced separately according to their relative energies from level II. Level I: B3LYP functional method with lanl2dz basis set for Au and 6-31G(d) basis sets for C and O. Level 2: B3LYP functional method with Aug-cc-PVTZ-PP basis set for Au and Aug-cc-PVTZ basis sets for C and O.

Bridge Adsorption

The low lying structures of $Au_7(CO)^+$ (similar to Figure S1).

14. ¹A₁ C_{2v} 0.54(0.34) 2065

The low lying structures of $Au_8(CO)^+$ (similar to Figure S1).

Au₈(CO)⁺ Head-on Adsorption

The low lying structures of $Au_9(CO)^+$ (similar to Figure S1).

The low lying structures of $Au_{10}(CO)^+$ (similar to Figure S1).

