Supplementary Information

Multi-Substituted Triazatruxene-Functionalized Pyrene Derivatives as Efficient Organic Laser Gain Media

Ming Sang,¹ Sizhen Cao,¹ Jianpeng Yi,¹ Jinjin Huang,¹ Wen-Yong Lai,^{*,1,2} Wei Huang^{*,1,2}

¹Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

²Key Laboratory of Flexible Electronics (KLOFE) & Institue of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

*Email: iamwylai@njupt.edu.cn; wei-huang@njtech.edu.cn

Figure S1.TGA thermograms of Py-nTAT.

Figure S2. DSC traces of Py-nTAT.

Figure S3. Fluorescence decay of (a) TAT and (b) Py in THF and film states.

Figure S4. Fluorescence decay of Py-nTAT in (a) THF and (b) film states.

Compound	$\tau_1 (\mathrm{ns})^a$	$ au_2 \left(\mathrm{ns} \right)^a$	$\tau_1 (\mathrm{ns})^b$	$ au_2 (\mathrm{ns})^b$
ТАТ	1.49 (22.53%)	4.39 (77.47%)	0.82 (76.52%)	2.23 (23.48%)
Ру	1.11 (83.72%)	3.6 (16.28%)	0.9 (85.30%)	3.28 (14.70%)

Table S1. The PL lifetimes of Py and TAT.

^{*a*} Measured in THF; ^{*b*} Measured in film states.

Compound	τ_1 (ns)	$ au_2$ (ns)	$< \tau > (ns)^a$	χ^2
Py-2TAT	0.83 (69.40%)	2.38 (30.60%)	1.30	1.15
Py-4TAT	0.98 (71.71%)	2.55 (28.29%)	1.42	1.17

^{*a*} the average lifetime

Figure S5. Optimized geometries and calculated frontier orbitals of Py-2TAT and Py-4TAT.

Figure S6. MALDI-TOF mass spectrum of TAT-Br (2).

Figure S7. ¹H NMR spectrum of 2.

Figure S8. ¹³C NMR spectrum of 2.

Figure S9. MALDI-TOF mass spectrum of 3.

Figure S10. ¹H NMR spectrum of 3.

Figure S11. ¹³C NMR spectrum of **3**.

Figure S12. MALDI-TOF mass spectrum of Py-2TAT.

Figure S14.¹³C NMR spectrum of Py-2TAT.

Figure S15. MALDI-TOF mass spectrum of Py-4TAT.

Figure S16. ¹H NMR spectrum of Py-4TAT.

Figure S17. ¹³C NMR spectrum of Py-4TAT.