Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 # Catalyst-free microwave-assisted arylglyoxal-based multicomponent reactions for the synthesis of fused pyrans Richa Mishra and Lokman H. Choudhury* Department of Chemistry, Indian Institute of Technology Patna, Patna-801103, Bihar, INDIA E-mail: lokman@iitp.ac.in, lokman.iitp@gmail.com; Tel: +916123028038 | Title page | .S1 | |--|---------| | General experimental information | S2 | | Copies of ¹ H and ¹³ C NMR spectrum of all compounds | .S3-S34 | #### **General Experimental Information** All starting materials were purchased from either Sigma Aldrich or Alfa Aesar and used without further purification. Microwave irradiation was carried out with Initiator 2.5 Microwave Synthesizers from Biotage, Uppsala, Sweden. NMR spectra were recorded on Bruker 400 or 500 MHz for 1 H and 100 or 125 MHz for 13 C in CDCl₃/DMSO-d6, chemical shift values were reported in δ values ppm downfield from tetra methyl silane. Infrared spectra were recorded on a Shimadzu FTIR spectrometer. CHN analyses were carried out using Elementar, Vario micro cube elemental analyzer and melting points were recorded using SRS EZ- Melt automated melting point apparatus by capillary methods and uncorrected. Typical experimental procedure for the synthesis of 1(a). Typical experimental procedure for the preparation of 1a: A mixture of phenylglyoxal monohydrate (1.0 mmol) and malononitrile (1.0 mmol) in ethanol (2 ml) was stirred at room temperature for 5 minutes. To this mixture 4-hydroxy-1-methyl-2(1H)-quinolone (1 mmol) was added and the resultant mixture was kept under microwave irradiation with sealed and stirring conditions for 10 minutes, keeping the temperature at 110 °C . After completion of the reaction, the reaction mixture was cooled to room temperature and solid product was separated by just filtration and purified by recrystallization from mixture of ethanol and THF. Using similar procedure all other products were prepared. ¹H NMR spectra of 1a ¹³C NMR spectra of 1a ¹H NMR spectra of 1b ¹³C NMR spectra of 1b ## ¹H NMR spectra of 1c #### ¹³C NMR Spectra of 1c ¹H NMR spectra of 1d #### ¹³C NMR spectra of 1d ¹H NMR spectra of 1e #### ¹³C NMR spectra of 1e ¹H NMR spectra of 1f #### ¹³C NMR spectra of 1f ¹H NMR spectra of 2a ¹³C NMR spectra of 2a #### ¹H NMR spectra of 2b #### ¹³C NMR spectra of 2b #### ¹H NMR spectra of 2c #### ¹³C NMR spectra of 2c ¹H NMR spectra of 2d ¹³C NMR spectra of 2d ## ¹H NMR spectra of 2e #### ¹³C NMR spectra of 2e ¹H NMR spectra of 3a #### ¹³C NMR spectra of 3a ¹H NMR spectra of 3b ¹³C NMR spectra of 3b ¹H NMR spectra of 3c ¹³C NMR spectra of 3c ¹H NMR spectra of 3d ¹³C NMR spectra of 3d ¹H NMR spectra of 3e ¹³C NMR spectra of 3e