Electronic Supplementary Information

Determination of Riboflavin Based on Fluorescence Quenching by Graphene Dispersions in Polyethylene Glycol

Ana María Díez-Pascual,* Diego García-García, María Paz San Andrés, Soledad Vera

Analytical Chemistry, Physical Chemistry and Chemical Engineering Department, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, E-28871 Alcalá de Henares, Madrid, Spain

* Corresponding author. am.diez@uah.es (A. M. Diez-Pascual)

Figure S1. Fluorescence contour graphs of vitamin B_2 in the presence of G (0.1 wt.%) dispersions in PEG (0.25 mM) for an ultrasonication power of 320 W and times of 1.0 (a), 2.0 (b), 5.0 (c) and 10.0 (d) min.

Figure S2. Fluorescence contour graphs of vitamin B_2 in the presence of G (0.1 wt.%) dispersions in PEG (0.25 mM) for an ultrasonication time of 5 min and powers of 80 (a), 160 (b), 240 (c) and 320 (d) W.

Fig. S3. Schematic representation of the H-bonding interactions between the four hydroxyl moieties of the ribityl chain of riboflavin and PEG.

Figure S4. Fluorescece contour graphs of commercial multivitamin tablets in PEG (0.25 mM) (a) and G (4.0 wt%) dispersions in PEG (0.25 mM). (c) Whole fluorescence spectrum of the commercial tablets in PEG (0.25 mM). As can be observed, the other components of the sample (vitamins A, E, C, K, D, B₁, B₆ and B₁₂, biotin, folic acid, niacin, and pantothenic acid) do not interfere with the determination of vitamin B₂.

Table S1. Comparison of the analytical features of different methods reported for the determination of vitamin B_2 .

Matrix	Method	Recovery	RSD (%)	LOD/LOQ	Ref.
		(70)	(70)		
whey, milk, buttermilk	FLU, pH = 7.0	95–102	NA	NA	(1)
pharmaceutical samples	FLU, λ_{ex} = 450nm	NA	0.7	30 µg L-1/ NA	(2)
pharmaceutical samples	SFS in AOT micelles, $\Delta \lambda$ = 74 nm	NA	1.3	9 μg L ⁻¹ / NA	(2)
multivitamin tablet	Quenching of FLU with G in PEG λ_{ex} = 310 nm	96.5	1.5–3.1	0.03 μg mL ⁻¹ / 0.1 μg mL ⁻¹	This work
cereals, vitamin tablets	LED-IF in surfactants, λ_{ex} = 450-500nm	91.3–100	~2	NA / 0.2 μg mL ⁻¹	(3)
_	FRET \Box , λ_{ex} = 320 nm, pH = 4	NA	NA	0.6 μg mL ⁻¹ / NA	(4)
milk, vitamin drink	FRET \Box , λ_{ex} = 340 nm, pH =7. 4	98–118	NA	170 nM/ NA	(5)
powdered infant milk	HPLC + UV-Vis	> 96	3.3	0.1 μg mL- ¹ / 0.25 μg mL ⁻¹	(6)
baby food, cereals, fruit	RP-HPLC + UV-Vis	70.3	1.6	$0.03 \ \mu g \ mL^{-1}/ \ NA$	(7)
baby food, milk, cereals	RP-HPLC + FLU, λ_{ex} = 422 nm	>89	5-13	NA	(8)
beef, pork loin, pig liver.	RP-HPLC + FLU, λ_{ex} = 450 nm	89.5	<5.0	< 1.35 mg kg ⁻¹	(9)
milk, baby formula, liver, pork, broccoli, flour	RP-HPLC + FLU, λ_{ex} = 468 nm	77–81	4.7	0.003 µg mL ⁻¹ / 0.1 mg kg ⁻¹	(10)
urine	ILC	>87.5	<9.0	40 ng mL ⁻¹ / NA	(11)
pharmaceutical samples	MLC + UV-Vis	NA	<3.3	3 ng mL-1/ NA	(12)
urine, pharmaceutical samples	UV-Vis	94.8 – 103.7	1.5-5.8	0.2 ng mL ⁻¹ / NA	(13)
soybean meal, cereals	Microbiological assay with L. rhamnosus	NA	4–16	NA	(14)
milk infant formulae	Biosensor assay using Biacore Kits	103.6	1.73	0.85 µg g ⁻¹ / NA	(15)
milk-based products	Biosensor assay based on SPR	NA	<5.0	70 μg L ⁻¹ / 234 μg L ⁻¹	(16)
beverage, tea, urine	CE + LIF	94.3–105	1.9–4.5	3.0 nM / NA	(17)
wine, milk, yoghurt, eggs	CE + LIF	>90.0	2.6	0.5 μg L ⁻¹ / NA	(18)
mammalian cells	CE+ LED-IF \Box , λ_{ex} = 450-500 nm	96.0	≤ 6.0	3.8 nM / 11 nM	(19)
urine	CE+ LED-IF, λ_{ex} = 450-500 nm	NA	NA	20 ng mL-1/ NA	(20)

NA: non-available; FLU: fluorescence; SFS: synchronous fluorescence spectrophotometry; AOT: bis-2-ethylhexysulfosuccinate sodium salt; LED-IF: LED-induced fluorescence detection; FRET: fluorescence resonance energy transfer; HPLC: high-performance liquid chromatography; UV-Vis: ultraviolet-visible spectrophotometry; RP-HPLC: reverse-phase HPLC; ILC: isocratic liquid chromatography; MLC: micellar liquid chromatography; SPR: surface plasmon resonance; CE: capillary electrophoresis

References

- (1) A. Z. Hodson and L. C. Norris, J. Biol. Chem., 1939, 131, 621-630.
- (2) L. Garcia, S. Blazquez, M. P. San Andres and S. Vera, Anal. Chim. Acta, 2001, 434, 193-199.
- (3) W. E. Ghann, Studies of Surfactants Effect on Riboflavin Fluorescence and Its Determination in Commercial Food Products and Vitamin Tablets, Electronic Theses and Dissertations, Paper 2000, 2008.
- (4) A. Kundu, S. Nandi, R. K. Layek, and A. K. Nandi, ACS. Appl. Mater. Interf., 2013, 5, 7392-7399.
- (5) J. Han, H. Y. Zou, M. X. Gao and C. Z. Huang. *Talanta*, 2016, 148, 279-284.
- S. Albalá-Hurtado, M. T. Veciana-Nogués, M. Izquierdo-Pulido and A. Mariné-Font, J. Chromatogr. A, 1997, 778, 247–253.
- P. Viñas, C. López-Erroz, N. Balsalobre and M. Hernández-Córdoba, J. Chromatogr. A, 2003, 1007, 77–84.
- (8) F. Arella, S. Lahély, J. B. Bourguignon and C. Hasselman, Food Chem., 1996, 56, 81-86.
- (9) X. Tang, D. A. Cronin and N. P. Brunton, J. Food Compos. Anal., 2006, 19, 831–837.
- (10) J. Jakobsen, Food Chem., 2008, 106, 1209–1217.
- (11) S. M. Mandal, M. Mandal, A. K. Ghosh and S. Dey. *Anal. Chim. Acta.*, 2009, 640, 110-113.
- (12) L. Monferrer-Pons, M. E. Capella-Peiró, M. Gil-Agustí and J. Esteve-Romero, J. Chromatogr. A, 2003, 984, 223-231.
- (13) S. Shiri, T. Khezeli, S. Sajjadifar, A. Delpisheh, M. Avazpour and A. Abbasi, J. Chem. 2013, 2013, Article ID 892380 (5pp).
- (14) J. L. Golbach, V. I. Chalova, C. L. Woodward and S. C. Ricke, *J. Food Compos. Anal.*, 2007, 20, 568–574.
- (15) Y. Gao, F. Guo, S. Gokavi, A. Chow, Q. Sheng and M. Guo, *Food Chem.*, 2008, 110, 769–776.
- (16) I. Caelen, A. Kalman and L. Wahlström, Anal. Chem. 2004, 76, 137-143.
- (17) L. Hu, X. Yang, C. Wang, H. Yuan and D. Xiao, J. Chromatogr. B, 2007, 856, 245–251.

- (18) T. R. I. Cataldi, N. Donatella, E. D. B. Giuseppe and A. B. Sabino, *J. Chromatogr. A*, 2002, **968**, 229–239.
- (19) J. Hühner, A. Ingles-Prieto, C. Neusüß, M. Lämmerhofer and H. Janovjak, *Electrophoresis*. 2015, 36, 518-525.
- (20) A-K. Su and C.-H. Lin, J. Chromatogr. B, 2003, 785, 39–46.