Synthesis of γ-Fe₂O₃@SiO₂@Polypyrrole Core/Shell/Shell Nanospheres with Flexible Controllability of Electromagnetic Properties Yajie Zhang, Zhiming Zhang, Shicong Xu, Liangmin Yu and Qunwei Tang

Supporting Information

Figure S1. Dynamic light scattering profile of FSHP_{1.0}-2 in alcohol. The average hydrodynamic diameter is 858 nm, PDI: 0.34.

Figure S2. TG curves registered under air atmosphere: A: FSH (a), and FSHP_x-2 samples with different FSH dosage: FSHP_{1.0}-2 (b), FSHP_{0.6}-2 (c), FSHP_{0.2}-2 (d), FSHP_{0.1}-2 (e), FSHP_{0.05}-2 (f); B: FSHP_{0.6}-y samples with different polymerization conditions: FSHP_{0.6}-2 (a), FSHP_{0.6}-3 (b), FSHP_{0.6}-4 (c), FSHP_{0.6}-1 (d).

Table S1. FSH mass fraction of the FSHP_x-2 and FSHP_{0.6}-y samples calculated by the residual mass fractions at 800 $^{\circ}$ C.

Sample	Residual mass fraction (wt%)	FSH mass fraction (wt%)*
FSH	73.8	/
FSHP _{1.0} -2	61.3	83.1
FSHP _{0.6} -2	53.2	72.1
FSHP _{0.2} -2	33.9	45.9
FSHP _{0.1} -2	23.0	31.2
FSHP _{0.05} -2	14.2	19.2
FSHP _{0.6} -1	42.3	57.3
FSHP _{0.6} -3	49.6	67.2

610	FSHP _{0.6} -4	44.3	60.0
-----	------------------------	------	------

* It is reasonable to consider that the residual mass at 800 °C was attributed to the residue of γ -Fe₂O₃@SiO₂ for each sample. In other words, the residues at 800 °C are the same substance for each sample. So we propose a method to calculate the FSH mass fraction of the FSHP_x-2 and FSHP_{0.6}-y samples. Here we designate the FSH mass fraction of FSHP samples as **x**, mass of FSHP as **a** g and residual mass fraction of FSH and FSHP samples at 800 °C as **b** and **c**, respectively. So there is:

> $\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$ $\mathbf{x} = \frac{C}{b}$

(b and c are given by TGA data)