Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

## Highly diastereo-/enantioselective Cu-catalyzed propargylic alkylations of

## propargyl acetates with cyclic enamines

Cheng Zhang, Yun-Ze Hui, De-Yang Zhang and Xiang-Ping Hu\*

Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, 280 Calhoun Street MSC140 QF307, Charleston, South Carolina 29425, USA, and Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Faculty of Engineering and Built Environment, University of Newcastle, Callaghan, NSW 2308, Australia

xiangping@dicp.ac.cn; xiangping1974@163.com

# **Supporting Information**

| General Information                                           | S2            |
|---------------------------------------------------------------|---------------|
| General procedure for copper-catalyzed asymmetric propargylic | alkylation of |
| propargylic acetates with cyclic enamines                     | S2            |
| Reference                                                     | S15           |
| Crystal data of (S,R)-3r                                      | S17           |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra                | S19           |

### **General Information**

All reactions were carried out under a nitrogen atmosphere. Solvents were purified by standard procedure before use. Commercial reagents were used without further purification. Flash chromatography was performed on silica gel 60 (40-63µm, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl<sub>3</sub> =  $\delta$  7.28). Carbon nuclear magnetic resonance (<sup>13</sup>C NMR) spectra were recorded on a Bruker 100 MHz spectrometer. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl<sub>3</sub> =  $\delta$  77.07). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = broad, s = singlet, d = doublet, t = triplet, q = broad, s = singlet, d = broad, s = singlet, s = siquartet, m = multiplet), coupling constants in Hertz (Hz), integration. Enantiomeric ratios were determined by chiral HPLC with hexane and 2-PrOH as eluents. Optical rotations were recorded on a JASCO P-1020 polarimeter. Ligands (S)- $L_1$ ,  $(R_c, S_p)-L_2^2$  and (R)- or (S)- $L_3^2$  were prepared according to literatures. Propargylic esters<sup>3</sup> and cyclic enamines<sup>4</sup> were synthesized according to reported procedures. Racemic products were prepared from propargylic acetates with enamines according to the general procedure by the catalysis of a combination of  $Cu(OAc)_2$  H<sub>2</sub>O and racemic (±)-L<sub>3</sub>.

# General procedure for copper-catalyzed asymmetric propargylic alkylation of propargylic acetates with cyclic enamines.

Cu(OAc)<sub>2</sub>·H<sub>2</sub>O (0.015 mmol) and (*R*)-L<sub>3</sub> (0.0165 mmol) were stirred at room temperature in 1 mL of anhydrous methanol under nitrogen atmosphere for 1 h. After being cooled to 0 °C, a solution of propargylic acetate **1** (0.3 mmol), cyclic enamine **2** (0.36 mmol) and <sup>*i*</sup>Pr<sub>2</sub>NEt (0.36 mmol) in 1 mL of anhydrous methanol was added. The mixture was stirred at room temperature for 10 h. The reaction was quenched by 1 mL of a buffer of NaOAc/AcOH, and extracted with EtOAc (5 mL x 2). The combined extracts were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vaccum. The residue was then purified by silica gel chromatography (hexanes/AcOEt, 40/1) to afford the alkylation product **3**.

(R)-2-[(S)-1-phenylprop-2-ynyl]cyclohexanone (syn-3a):<sup>2</sup> colorless oil, 82% yield, 94% ee. HPLC



conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 16.8 min; minor enantiomer:  $t_2$  = 23.9 min. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 42 (*c* 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.35-7.40 (m, 2H), 7.28-7.34 (m, 2H), 7.20-7.25 (m, 1H), 4.47 (s, 1H), 2.45-3.55 (m, 2H), 2.22-2.28 (m, 2H), 1.97-2.11 (m, 2H), 1.52-1.90 (m, 4H).



(*S*)-2-[(*S*)-1-phenylprop-2-ynyl]cyclohexanone (*anti*-3a): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.35-7.38 (m, 2H), 7.29-7.32 (m, 2H), 7.24-7.26 (m, 1H), 4.11 (dd, *J* = 7.2, 2.4 Hz, 1H), 2.77-2.84 (m, 1H), 2.43-2.48 (m, 1H), 2.31-2.39 (m, 1H), 2.21 (d, *J* = 2.4 Hz, 1H), 1.98-2.04 (m, 1H), 1.78-1.83 (m, 2H), 1.56-1.65 (m, 2H), 1.21-1.28 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  210.2, 138.5, 128.7, 128.3, 127.1, 85.7, 70.4, 57.0, 42.2, 36.4, 31.2, 27.9, 24.7. HRMS calc. for C<sub>15</sub>H<sub>16</sub>O [M]<sup>+</sup>: 212.1201, found: 212.1198.

(R)-2-[(S)-1-(4-chlorophenyl)prop-2-ynyl]cyclohexanone (syn-3b): colorless oil, 80% yield, 95% ee.



HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 8.6 min; minor enantiomer:  $t_2$  = 10.8 min. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 35 (*c* 0.7, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.25-7.31 (m, 4H), 4.38-4.40 (m, 1H), 2.43-2.51 (m, 2H), 2.22-2.28 (m, 2H), 2.04-2.06 (m, 2H), 1.87-1.91 (m, 1H), 1.53-1.77 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.5, 138.4, 132.7, 129.4, 128.5, 82.8, 72.9, 56.3, 42.0, 35.8, 29.0, 27.2, 24.8. HRMS

calc. for  $C_{15}H_{15}OC1 \text{ [M]}^+: 246.0811$ , found: 246.0816.







HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 11.8 min; minor enantiomer:  $t_2$  = 18.8 min. [α]<sub>D</sub><sup>20</sup> = 36 (*c* 0.5, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.37 (s, 1H), 7.20-7.25 (m, 3H), 4.41-4.43 (m, 1H), 2.44-2.53 (m, 2H), 2.23-2.30 (m, 2H), 2.03-2.06 (m, 2H), 1.88-1.91 (m, 1H), 1.54-1.82 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 209.3, 142.0, 134.2, 129.6, 128.1, 127.1, 126.2, 82.5, 73.2, 56.2, 42.0,







(R)-2-[(S)-1-(2-chlorophenyl)prop-2-ynyl]cyclohexanone (syn-3d): colorless oil, 88% yield, 95% ee.



HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 7.6 min; minor enantiomer:  $t_2$  = 8.5 min. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 36 (*c* 0.4, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.24-7.27 (m, 1H), 7.17-7.21 (m, 1H), 4.94-4.95 (m, 1H), 2.59-2.63 (m, 1H), 2.48-2.51 (m, 1H), 2.33-2.27 (m, 2H), 2.03-2.05 (m, 1H), 1.87-1.89 (m, 3H), 1.63-1.71 (m, 1H), 1.51-1.55 (m, 1H); <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>):  $\delta$  209.0, 136.9, 132.6, 130.4, 129.6, 128.3, 126.7, 82.5, 72.8, 52.9, 41.8, 33.6, 27.7, 26.8, 24.6. HRMS calc. for C<sub>15</sub>H<sub>15</sub>OCl [M]<sup>+</sup>: 246.0811, found: 246.0813.



(R)-2-[(S)-1-(4-fluorophenyl)prop-2-ynyl]cyclohexanone (syn-3e): colorless oil, 88% yield, 92% ee.



HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 10.7 min; minor enantiomer:  $t_2$  = 13.6 min. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 37 (*c* 0.5, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.32-7.34 (m, 2H), 6.97-7.01 (m, 2H), 4.41-4.42 (m, 1H), 2.44-2.52 (m, 2H), 2.22-2.28 (m, 2H), 2.06-2.08 (m, 2H), 2.89-2.92 (m, 1H), 1.54-1.82 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.7, 161.7 (d, *J* = 243 Hz), 135.5 (d, *J* = 3 Hz), 129.4 (d, *J* = 8 Hz),

115.2 (d, J = 21 Hz), 83.1, 72.8, 56.5, 42.0, 35.6, 29.0, 27.3, 24.8; HRMS calc. for C<sub>15</sub>H<sub>15</sub>OF [M]<sup>+</sup>: 230.1107, found: 230.1114.





42.0, 35.8, 29.0, 27.2, 24.8. HRMS calc. for  $C_{15}H_{15}OBr[M]^+$ : 292.0306, found: 292.0304.







95% ee. HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 6.6 min; minor enantiomer:  $t_2$  = 7.4 min. [α]<sub>D</sub><sup>20</sup> = 55 (*c* 0.1, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.49 (d, *J* = 7.6 Hz, 2H), 4.48-4.49 (m, 1H), 2.53-2.57 (m, 1H), 2.45-2.49 (m, 1H), 2.23-2.31 (m, 2H), 2.07-2.09 (m, 2H), 1.90-1.93 (m, 1H), 1.55-1.83 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 209.2,

144.1, 129.2 (q, J = 32 Hz), 128.4, 125.3 (q, J = 4 Hz), 124.1 (q, J = 270 Hz), 82.4, 73.2, 56.2, 42.0, 36.3, 29.2, 27.2, 24.8. HRMS calc. for C<sub>16</sub>H<sub>15</sub>OF<sub>3</sub> [M]<sup>+</sup>: 280.1075, found: 280.1073.





(R)-2-[(S)-1-(4-methylphenyl)prop-2-ynyl]cyclohexanone (syn-3h): colorless oil, 92% yield, 91% ee.



HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 12.4 min; minor enantiomer:  $t_2$  = 17.9 min. [α]<sub>D</sub><sup>20</sup> = 42 (*c* 0.7, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.25 (d, *J* = 6.8 Hz, 2H), 7.12 (d, *J* = 6.8 Hz, 2H), 4.42-4.43 (m, 1H), 2.45-2.54 (m, 2H), 2.33 (s, 3H), 2.22-2.29 (m, 2H), 2.03-2.10 (m, 2H), 1.49-1.91 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 209.9, 136.8, 136.4, 129.1, 127.8, 83.5, 72.4, 56.5, 42.0,

35.8, 28.8, 27.2, 24.7, 21.0. HRMS calc. for C<sub>16</sub>H<sub>18</sub>O [M]<sup>+</sup>: 226.1358, found: 226.1365.



(*R*)-2-[(*S*)-1-naphthylprop-2-ynyl]cyclohexanone (*syn*-3i): colorless oil, 88% yield, 92% ee. HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 19.7 min; minor enantiomer:  $t_2$  = 37.2 min.  $[\alpha]_D^{20}$  = 36 (*c* 0.6, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.90 (s, 1H), 7.80-7.84 (m, 3H), 7.44-7.46 (m, 3H), 4.66 (s, 1H), 2.64-2.67 (m, 1H), 2.48-2.52 (m, 1H), 2.38 (s, 1H), 2.24-2.32 (m, 1H), 2.03-2.11 (m, 2H), 1.82-1.91 (m, 2H), 1.66-1.76 (m, 1H), 1.51-1.57 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.7,

137.2, 133.3, 132.4, 128.1, 127.8, 127.6, 126.8, 126.2, 126.0, 125.8, 83.2, 73.0, 56.3, 42.0, 36.4, 28.8, 27.2, 24.8. HRMS calc. for  $C_{19}H_{18}O[M]^+$ : 262.1358, found: 262.1368.



(*R*)-2-[(*S*)-1-furylprop-2-ynyl]cyclohexanone (*syn*-3j): colorless oil, 90% yield, 80% ee. HPLC conditions: chiralpak OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1 = 9.7$  min; minor enantiomer:  $t_2 = 8.5$  min.  $[\alpha]_D^{20} = 15$  (*c* 1.0, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.32 (s, 1H), 6.28-6.30 (m, 2H), 4.50-4.51 (m, 1H), 2.77-2.80 (m, 1H), 2.47-2.50 (m, 1H), 2.26-2.33 (m, 1H), 2.22 (s, 1H), 2.05-2.06 (m, 2H), 1.90-1.93 (m, 1H), 1.61-1.84 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.2, 152.4, 141.7, 110.3, 107.2, 80.8, 71.8, 52.7, 41.9, 30.6, 29.0, 27.1,

24.7. HRMS calc. for  $C_{13}H_{14}O_2$  [M]<sup>+</sup>: 202.0994, found: 202.0998.



(*R*)-2-[(*S*)-1-(3-pyridinyl)prop-2-ynyl]cyclohexanone (*syn*-3k): colorless oil, 86% yield, 95% ee. HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 29.5 min; minor enantiomer:  $t_2$  = 20.8 min.  $[\alpha]_D^{20}$  = 35 (*c* 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.61 (s, 1H), 8.48 (s, 1H), 7.74-7.76 (m, 1H), 7.26 (s, 1H), 4.40-4.41 (m, 1H), 2.54-2.56 (m, 1H), 2.43-2.47 (m, 1H), 2.22-2.30 (m, 2H), 2.05-2.15 (m, 2H), 1.90-1.93 (m, 1H), 1.52-1.80 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.2, 149.1, 147.8, 136.1, 135.9, 123.3, 82.0, 73.3, 56.1,







(R)-2-[(S)-1-phenylprop-2-ynyl]cyclopentanone (syn-3l): colorless oil, 84% yield, -84% ee [(S)-L<sub>3</sub> was



used as the ligand]. HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 26.4 min; minor enantiomer:  $t_2$  = 21.3 min. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 180 (*c* 1.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.37-7.39 (m, 2H), 7.31-7.34 (m, 2H), 7.23-7.26 (m, 1H), 4.41 (s, 1H), 2.34-2.43 (m, 2H), 2.27 (s, 1H), 2.03-2.22 (m, 3H), 1.86-1.91 (m, 1H), 1.61-1.74 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  217.8, 139.3, 128.6, 127.4, 127.0,





S11



58.2, 42.4, 33.7. HRMS calc. for  $C_{14}H_{14}O_2$  [M]<sup>+</sup>: 214.0994, found: 214.1002.



(R)-2-[(S)-1-phenylprop-2-ynyl]-4,4-dimethylcyclohexanone (syn-3n): colorless oil, 88% yield, 93%



ee. HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 9.0 min; minor enantiomer:  $t_2$  = 19.8 min.  $[\alpha]_D^{20}$  = 53 (*c* 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.30-7.38 (m, 4H), 7.24-7.26 (m, 1H), 4.50 (s, 1H), 2.65-2.68 (m, 1H), 2.33-2.46 (m, 2H), 2.28 (s, 1H), 1.60-1.81 (m, 4H), 1.05 (s, 3H), 1.01 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  210.2, 139.6, 128.4, 127.8, 126.8, 83.1, 72.7, 52.1, 40.7, 39.1, 38.0, 36.0, 31.5, 30.4, 24.3. HRMS calc. for C<sub>17</sub>H<sub>20</sub>O [M]<sup>+</sup>: 240.1514, found: 240.1507.



Spiro[(R)-2-[(S)-1-phenyl)prop-2-ynyl]cyclopentanone-4,2'-[1,3]-dioxolane] (syn-3o): White solid, 80%



yield, 97% ee. HPLC conditions: chiralcel OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 12.2 min; minor enantiomer:  $t_2$  = 7.6 min. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 40 (*c* 0.2, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.30-7.40 (m, 4H), 7.24-7.26 (m, 1H), 4.53 (s, 1H), 3.86-3.94 (m, 4H), 2.86-2.90 (m, 1H), 2.59-2.68 (m, 1H), 2.45-2.49 (m, 1H), 2.29 (s, 1H), 2.16-2.23 (m, 1H), 2.00-2.03 (m, 2H), 1.91-1.94 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.0, 139.0, 128.4, 127.8, 126.9, 107.5, 82.6, 73.0, 64.6, 64.4, 52.5, 38.0, 35.9, 35.4, 33.9.

HRMS calc. for  $C_{17}H_{18}O_3$  [M]<sup>+</sup>: 270.1256, found: 270.1260.



S13



(R)-2-[(S)-1-phenylprop-2-ynyl]-4-methoxylcyclohexanone (syn-3p): colorless oil, 82% yield, 95% ee.



HPLC conditions: chiralpak OJ-H, 40 °C, 215 nm, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, major enantiomer:  $t_1$  = 25.8 min; minor enantiomer:  $t_2$  = 20.5 min. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 49 (*c* 0.4, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.36-7.38 (m, 2H), 7.30-7.33 (m, 2H), 7.22-7.25 (m, 1H), 4.52 (s, 1H), 3.65 (s, 1H), 3.20 (s, 3H), 2.89-2.93 (m, 1H), 2.58-2.65 (m, 1H), 2.21-2.33 (m, 4H), 1.71-1.93 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.4, 139.3, 128.4, 127.8, 126.9, 83.0, 73.4, 72.8,

55.7, 50.6, 36.5, 35.7, 31.3, 29.9. HRMS calc. for  $C_{16}H_{18}O_2$  [M]<sup>+</sup>: 242.1307, found: 242.1300.



(2*S*,3*R*)-4-Methyl-5-phenylhept-6-yn-3-one (*syn*-3q). Obtained with (*S*)-L<sub>1</sub>, 60% yield. Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et<sub>2</sub>O, 150:1 to 110:1). 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 215 nm, 40 °C):  $t_R$  (minor) = 16.6 min,  $t_R$  (major) = 25.3 min. [ ]<sub>D</sub><sup>28</sup> = 94.2 (*c* 0.88, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.33–7.26 (m, 4H), 7.24–7.20 (m, 1H), 4.00 (dd, *J* = 8.4, 2.5 Hz, 1H), 2.90–2.83 (m, 1H), 2.40–2.32 (m, 1H), 2.30 (d, *J* = 2.5 Hz, 1H), 2.06–1.95 (m,

1H), 1.26 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  212.9, 139.8, 128.7, 128.2, 127.4, 83.9, 72.7, 52.7, 40.5, 36.1, 14.9, 7.5. HRMS calc. for C<sub>14</sub>H<sub>16</sub>O [M+H]<sup>+</sup>: 201.1279, found: 201.1273.



### Reference

- F.-L. Zhu, Y. Zou, D.-Y. Zhang, Y.-H. Wang, X.-H. Hu, S. Chen, J. Xu and X.-P. Hu, Angew. Chem. Int. Ed., 2014, 53, 1410.
- 2. C. Zhang, X.-H. Hu, Y.-H. Wang, Z. Zheng, J. Xu and X.-P. Hu, J. Am. Chem. Soc., 2012, 134, 9585.
- a) R. J. Detz, M. M. E. Delville, H. Hiemstra and J. H. van Maarseveen, *Angew. Chem. Int. Ed.*, 2008, 47, 3777; b) G. Hattori, H. Matsuzawa, Y. Miyake and Y. Nishibayashi, *Angew. Chem. Int. Ed.*, 2008, 47, 3781.
- 4. a) S. Hünig, E. Lücke and W. Brenninger, Org. Synth., 1961, 41, 65; b) G. L. May and J. T. Pinhey,

Aust. J. Chem., 1982, 35, 1859; c) T. Mikie, H. Asahara, K. Nagao, N. Ikuma, K. Kokubo and T. Oshima, Org. Lett., 2011, 13, 4244; d) L. Anzalone and J. A. Hirsch, J. Org. Chem., 1985, 50, 2607; e)
S. Kaiser, S. P. Smidt and A. Pfaltz, Angew. Chem. Int. Ed., 2006, 45, 5194; f) J.-J. Chanot and C. Plessis, US 2012165557, 2012; g) E. J. Hicken, K. W. Hunt, M. E. Rodriguez, T. P. Tang and S. Michael, WO 2013148851, 2013.

## Single crystal of (*S*,*R*)-3r



Procedures of preparation of (*S*,*R*)-**3r** are the same as other asymmetric substitution reactions except with (*S*)-**L**<sub>3</sub> instead of (*R*)-**L**<sub>3</sub>. Single crystal of (*S*,*R*)-**3r** are grew in Methanol by slow evaporating of the solvent. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 (d, 2H), 7.23 (d, 2H), 4.45 (m, 1H), 3.92-3.94 (m, 4H), 2.82-2.84 (m, 1H), 2.57-2.63 (m, 1H), 2.43-2.47 (m, 1H), 2.30 (s, 1H), 2.12-2.18 (m, 1H), 1.96-2.03 (m, 2H), 1.86-1.89 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  207.9, 138.1, 131.5, 129.6, 120.9, 107.4, 82.0, 73.5, 64.7, 64.5, 52.4, 38.0, 35.5, 33.9.

### Crystal data

| Identification code            | 120927a_0m                              |
|--------------------------------|-----------------------------------------|
| Empirical formula              | C17 H17 Br O3                           |
| Formula weight                 | 349.22                                  |
| Temperature                    | 293(2) K                                |
| Wavelength                     | 0.71073 A                               |
| Crystal system, space group    | Monoclinic, P21/c                       |
| Unit cell dimensions           | a = 5.776(3) A alpha = 90 deg           |
|                                | b = 32.024(16) A beta = 115.031(13) deg |
|                                | c = 9.608(4) A gamma = 90 deg.          |
| Volume                         | 1610.3(13) A^3                          |
| Z, Calculated density          | 4, 1.440 Mg/m^3                         |
| Absorption coefficient         | 2.559 mm^-1                             |
| F(000)                         | 712                                     |
| Crystal size                   | 0.15 x 0.13 x 0.12 mm                   |
| Theta range for data collectio | n 2.42 to 27.80 deg.                    |
| Limiting indices               | -7<=h<=7, -41<=k<=41, -12<=l<=11        |
| Reflections collected / unique | e  13713 / 3749 [R(int) = 0.0563]       |
| Completeness to theta $= 27.8$ | 0 98.0 %                                |

| None                             |
|----------------------------------|
| 0.7487 and 0.7001                |
| Full-matrix least-squares on F^2 |
| 3749 / 0 / 190                   |
| 1.066                            |
| R1 = 0.0938, $wR2 = 0.2529$      |
| R1 = 0.1427, wR2 = 0.2839        |
| 1.971 and -0.539 e.A             |
|                                  |



























hills

-1

-209.452















































