The biocompatibility evaluation of iron oxide nanoparticles synthesized by one pot process for intravenous iron supply

Juanjuan Li[‡], ^{a,b} Yang Liu[‡], ^{a,b} Ruitao Cha, ^{*,a} Bei Ran, ^{a,c} Kaiwen Mou, ^{a,d} Huashan Wang, ^b Qian Xie, ^{*,e} Jiashu Sun, ^a Xingyu Jiang^{*,a}

^a Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China;

^b School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, China;

^c State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China;

^dOcean University of China, Qingdao 266100, China;

^e Division of Nephrology, Peking University Third Hospital, Beijing 100191, China E-mail: chart@nanoctr.cn, xieqian_2001@hotmail.com, xingyujiang@nanoctr.cn

Fig. S1. The classification diagram of iron agents.

Fig. S2 Standard curve of iron ion concentrations from 25.94 μ g/ml to 1.18 μ g/ml measured at 478 nm by multimode reader. Y=0.023X+0.055, R²=0.9998

Fig. S3 Standard curve of iron ion concentrations from 25.94 μ g/ml to 1.18 μ g/ml measured by Uv-vis. Y=0.072X+0.046, R²=0.9995

Fig. S4 Iron concentration in water through ultrafiltration after the addition of SCIONs

Fig. S5 Dissolved percent of SCIONs in serum after 24 h.