Supporting Information

Solvent treatment effect of the PEDOT:PSS anode interlayer in

inverted planar perovskite solar cells

Xue-Yuan Li,^{a), d)} Lian-Ping Zhang,^{a)} Feng Tang,^{b)} Zhong-Min Bao,^{c)} Jian Lin,^{a)} Yan-Qing Li,^{c)} Liwei Chen,^{b)} Chang-Qi Ma^{a),*}

a) Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 398 Ruoshui Road, SEID, SIP, Suzhou, Jiangsu, 215123, PR China, Email: <u>cqma2011@sinano.ac.cn</u>.

b) i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 398 Ruoshui Road, SEID, SIP, Suzhou, Jiangsu, 215123, PR China.

c) Institute of Functional Nano & Soft Materials, Soochow University, Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 199 Renai Road, SEID, SIP, Suzhou Jiangsu 215123, PR China.

d) University of China Academy of Sciences, Beijing 100049, China.

Varying layer thickness of the initial PEDOT:PSS film to achieve a final PEDOT:PSS with layer thickness of 35 nm

It is known that solvent treatment would lead to thinner PEDOT:PSS layer. To achieve similar PEDOT:PSS layer thickness for UV-vis measurement and for device fabrication, the initial PEDOT:PSS layer thickness was increased by reducing the spin speed. Table S1 listed the layer thickness results of the initial PEDOT:PSS films with difference spin speed, and the final layer thickness after H₂O treatment. As can be seen here, using a spin speed of 2000 rpm, a pristine PEDOT:PSS layer with 51.5 nm was obtained, which was decreased to 32.8 nm after H₂O treatment, which is close to that of PEDOT:PSS film deposited at 3500 rpm (the reference PEDOT:PSS film).

Solvent	Spin speed (rpm) ^a	Layer thickness(nm)	
		Before solvent treatment	After solvent treatment
H ₂ O	1000	71.2	45.5
	1500	63.4	41.2
	2000	51.5	32.8
	2500	45.1	28.6
	3000	40.1	19.9

Table S2. Layer thickness of PEDOT:PSS films before and after H₂O treatment

a: spin speed for the preparation of pristine PEDOT:PSS film

Figure S1. a) UV-Vis absorption spectra comparison of the pristine, H₂O treated and PEDOT:PSS/PSSNa film; b) S (2p) core level spectra for additional PSSNa on H₂O treated PEDOT:PSS films. Note that: the additional PSSNa layer was deposited on H₂O-treated PEDOT:PSS surface.

As can be seen from Figure S1a, the absorption bands of PSS increased after deposition of PSSNa layer, indicating that PSSNa was successfully deposited on PEDOT:PSS surface. No PEDOT component was detected from the XPS spectra, confirming a PSS-rich surface on the PEDOT:PSS/PSSNa surface.

Figure S2: Images of contact angle of CH₂I₂ on a) pristine; b) H₂O- c) EtOH- d) EtOH:H₂O-(v/v, 8:2) treated PEDOT:PSS film and on PEDOT:PSS/PSSNa film (e).