ELECTRONIC SUPPLEMENTARY INFORMATION

Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-

PCL-b-PLLA triblock terpolymers

Jordana K. Palacios¹, Agurtzane Mugica¹, Manuela Zubitur², Amaia Iturrospe³, Arantxa Arbe³, Guoming Liu⁴, Dujin Wang⁴, Junpeng Zhao⁵, Nikos Hadjichristidis^{*5} and Alejandro J. Müller^{*1,6}

¹POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.

²Chemical and Environmental Engineering Department, Polytechnic School, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain

³Materials Physics Center (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.

⁴Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

⁵King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal, Saudi Arabia

⁶IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

*corresponding authors: <u>alejandrojesus.muller@ehu.es</u> and

Nikolaos.Hadjichristidis@kaust.edu.sa

S1. Differential scanning calorimetry (DSC)

Several tests, at different cooling rates, were carried out to establish the ideal rate to achieve the

crystallization of the blocks.

Figure SI.1. a) DSC cooling scans at several cooling rates (CR) after melting at 160 °C for 3 min and b) Subsequent

DSC heating scans at 20 °C min⁻¹ for PEO₂₉PCL₄₂PLLA₂₉^{16.1}.

Figure SI.2. a) DSC cooling scans at several cooling rates (CR) after melting at 160 °C for 3 min and b) Subsequent

DSC heating scans at several heating rates (HR) for PEO₂₉PCL₄₂PLLA₂₉^{16.1}.

Figure SI.3. a) DSC cooling scans at several cooling rates (CR) after melting at 160 °C for 3 min and b) Subsequent

DSC heating scans at 20 °C min⁻¹ for PEO₂₃PCL₃₄PLLA₄₃^{19.9}.

Figure SI.4. a) DSC cooling scans at several cooling rates (CR) after melting at 160 °C for 3 min and b) Subsequent

DSC heating scans at several heating rates (HR) for PEO₂₃PCL₃₄PLLA₄₃^{19.9}.

S2. DSC Thermal properties of the triblock terpolymers studied here and some diblock and triblock copolymers reported in the literature.

In Table S.1 are included the DSC thermal properties of the triblock terplymers and compared to relevant block copolymers previously reported.

Table S.1. Crystallization and melting temperatures of PEO₂₉PCL₄₂PLLA₂₉^{16.1}and PEO₂₃PCL₃₄PLLA₄₃^{19.9} triblocks terpolymers compared to different linear diblock copolymers reported in the literature

	PLLA			PCL			PEO			
Sample code	Block M _w	T _c	T _m	Block M _w	T _c	T _m	Block M _w	T _c	T _m	Ref.
	(kg mol⁻¹)	(ºC)	(ºC)	(kg mol ⁻¹)	(ºC)	(ºC)	(kg mol ⁻¹)	(ºC)	(ºC)	
PEO ₂₉ PCL ₄₂ PLLA ₂₉ ^{16.1}	4.7	75.0	124.5	6.8	41.7	56.9	4.6	33.5	48.0	Samples
PEO ₂₃ PCL ₃₄ PLLA ₄₃ ^{19.9}	8.5	72.3	121.8	6.8	36.7	54.2	4.6	22.1	45.0	reported here
$L_{93}C_7^{18}$	15.7	102.6	171.7	1.7						
$L_{81}C_{19}^{21}$	16.7	102.8	170.5	3.9						
$L_{60}C_{40}^{21}$	12.4	102.8	168.9	8.5	0.5- 11.3	54.4				Castillo, 2010 ²
$L_{55}C_{45}^{18}$	9.5	98.3	166.9	8.1	20.8	55.0				
L ₄₄ C ₅₆ ²⁵	11.1	91.8	166.5	14.2	23.2	56.5				
$L_{32}C_{68}^{22}$	6.9	100.3	161.0	14.9	28.1	56.9				
$L_{10}C_{90}^{24}$	2.4	86.8	141.5	21.5	32.5	57.7				
PLLA2300 <i>b</i> PEG5000	2.3	93.0	140.1				5.0	34.1	54.7	
PLLA6300 <i>b</i> PEG5000	6.3	105.2	153.8				5.0	34.6	42.2	Sun, 2004 ¹
PLLA12000bPEG5000	12.0	116.3	162.4				5.0	12.9	37.2	
PEO ₅ - <i>b</i> -PLLA ₁₆	16.0	90.6	141.2				5.0		41.2	Huang,2008 ³
PEO ₅ - <i>b</i> -PLLA ₃₀	30.0	100.0	142.1				5.0		39.7	
2LPCL ₅₀ -b-PLLA ₄₃	12.45	102.4	151.7	11.33	12.6	51.2				Wang,2006 ⁵
PEOCL56				6.24	30.4	55.4	5.0	30.4	55.4	He, 2006 ⁶
PEOCL62				8.13	34.3	56.3	5.0	28.7	56.3	
PEG5000-PCL1000				1.0			5.0	34.7	59.8	
PEG5000-PCL2900				2.9			5.0	30.0	51.0/5 4.9	Sun, 2011 ⁷
PEG5000-PCL9200				9.2	34.6	56.7	5.0	29.3	44.6	
PCL ₁₃ -PEG ₄₅ -PCL ₁₃				3.0	16.5	51.7	2.0	12.2	41.2	Wei, 2009 ⁸

References of supporting information

(1) Sun, J.; Hong, Z.; Yang, L.; Tang, Z.; Chen, X.; Jing, X. Polymer 2004, 45, 5969-5977.

(2) Castillo, R. V.; Müller, A. J.; Raquez, J. M.; Dubois, P. Macromolecules 2010, 43, 4149-4160.

(3) Huang, S.; Jiang, S.; An, L.; Chen, X. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1400-1411.

(4) Muller, A. J.; Avila, M.; Saenz, G.; Salazar, J. In *Poly(Lactic Acid) Science and Technology: Processing, Properties, Additives and Applications*, Jimenez, A.,Peltzer, M.,Ruseckaite, R., Eds.; The Royal Society of Chemistry: Cambridge, 2015; Chapter 3, p 66.

(5) Wang, J. L.; Dong, C. M. Macromol. Chem. Phys. 2006, 207, 554-562.

(6) He, C.; Sun, J.; Ma, J.; Chen, X.; Jing, X. Biomacromolecules 2006, 7, 3482-3489.

(7) Sun, J.; He, C.; Zhuang, X.; Jing, X.; Chen, X. J. Polym. Res. 2011, 18, 2161-2168.

(8) Wei, Z.; Liu, L.; Yu, F.; Wang, P.; Qi, M. J. Appl. Polym. Sci. 2009, 111, 429-436."

S3. Polarized light optical microscopy (PLOM). Photographs videos

PLOM was performed on cooling from the melt in order to observe the sequential crystallization and superstructure formation of each block. Small videos made of PLOM photograps for each triblock terpolymer are presented.

TriblockTerpolymer 16.1.ppsx

TribloqueTerpolymer 16.1.ppsx

TriblockTerpolymer 19.9.ppsx

TriblockTerpolymer 19.9.ppsx