Supporting Information for:-

Discovery of monocarbonyl curcumin hybrids as a novel class of human DNA ligase I inhibitors: *In silico* design, synthesis and biology[#]

Dhanaraju Mandalapu,^{§,a} Deependra Kumar Singh,^{§,b} Sonal Gupta,^{a,c} Vishal M. Balaramnavar,^{b, 1} Mohammad Shafiq,^b Dibyendu Banerjee^{*,b,c} and Vishnu Lal Sharma^{*,a,c}

^aMedicinal & Process Chemistry Division, ^bMolecular & Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, ^cDepartment of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, Uttarakhand, India, 244713. ^dAcademy of Scientific and Innovative Research (AcSIR), New Delhi-110001 (India).

* Corresponding authors: 1. Dr. Vishnu Lal Sharma, Medicinal and Process Chemistry Division, Tel.: 91-522-2772450; Ext. 4671; Fax: 91-522-2771941, E-mail: vl_sharma@cdri.res.in; vlscdri@gmail.com. 2. Molecular & Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, Tel.: 91-522-2772450; Ext. 4443; Fax: 91-522-2771941; E-mail: d.banerjee@cdri.res.in; dibyendu25@hotmail.com.

[§]Both authors contributed equally.

TABLE OF CONTENTS

1. Figure S1	S2
2. Table S1&Table S2	S3-S4
3. ¹ H NMR spectral data (14-49) and ¹³ C NMR spectral data (14-36, 38-49)	S5-S46
4. DEPT 135 spectra of compound 47	S47
5. HRMS spectra (14-28, 30-43, 45-49)	S48-S58
6. IC ₅₀ calculation	S59

Figure S1. Ligand pharmacophore mapping of the top designed compounds on the pharmacophore model.

17

22

24

3	2
-	_

Features	Rank	Direct Hit	Partial Hit	Max Fit	Max. Fit
01	ZHHH	84.746	1111111111	000000000	4
02	ZHHH	83.126	1111111111	0000000000	4
03	ZHHH	82.598	1111111111	0000000000	4
04	ZHHH	82.530	1111111111	0000000000	4
05	ZHHH	82.411	1111111111	0000000000	4
06	ZHHH	80.785	1111111111	0000000000	4
07	ZHHH	80.301	1111111111	0000000000	4
08	ZHHH	79.399	1111111111	0000000000	4
09	ZHHH	78.215	1111111111	0000000000	4
10	ZHHH	78.215	1111111111	0000000000	4

Table S1. The summaries of hypothesis run

Direct hitmask indicates [1] or (0) not a training set molecule mapped every feature. Partial hit mask indicates whether [1] or (0) not a molecule mapped all but one feature. ^aZ; hydrophobic, A; hydrogen bond acceptor (HBA) and R; ring aromatic

 Table S2. The scoring functions from docking runs and fit values from generated pharmacophore model.

Ligand	MolDockScore	Rerank Score	FitValue
14	-131.536	-110.624	2.792
15	-148.516	-108.418	2.798
16	-137.323	-101.381	2.753
17	-148.269	-105.554	2.741
18	-147.602	-115.819	2.739
19	-156.207	-125.423	2.682
20	-145.67	-120.854	2.797
21	-144.586	-110.387	2.806
22	-148.069	-119.987	2.755
23	-165.362	-137.674	2.922
24	-149.463	-122.416	2.75
25	-154.501	-115.94	2.674

26	-144.309	-107.627	2.782
27	-137.104	-108.952	2.799
28	-137.589	-107.367	2.772
29	-139.567	-103.621	2.831
30	-146.031	-116.305	2.776
31	-148.960	-117.481	1.998
32	-145.045	-114.59	2.786
33	-137.574	-110.395	2.803
34	-143.556	-116.201	2.742
35	-137.815	-109.852	2.827
36	-160.53	-120.778	2.711
37	-161.024	-126.558	2.679
38	-127.897	-106.193	2.792
39	-128.885	-104.055	2.792
40	-137.145	-107.476	2.74
41	-135.849	-106.064	2.729
42	-140.872	-108.73	2.73
43	-159.141	-120.764	2.691
44	-145.608	-112.409	2
45	-135.752	-111.656	1.987
46	-139.066	-111.258	1.989
47	-137.595	-111.823	1.997
48	-165.078	-120.678	2.115
49	-155.153	-122.533	1.992

¹H NMR Spectra of compound 14(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **14**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **15**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **15**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound 16(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **16**(100 MHz, CDCl₃)

¹³C NMR Spectra of compound **17**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **18**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **18**(100 MHz, CDCl₃+DMSO- d_6)

¹H NMR Spectra of compound **19**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **19**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **20**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound 20(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **21**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound 21(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **22**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **22**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **23**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **23**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **24**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **24**(100 MHz, DMSO- d_6)

¹H NMR Spectra of compound **25**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **25**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **26**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **26**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **27**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **27**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **28**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **28**(100 MHz, DMSO- d_6)

¹H NMR Spectra of compound **29**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **29**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **30**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **30**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **31**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **31**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **32**(400 MHz, CDCl₃+DMSO-*d*₆)

¹³C NMR Spectra of compound **32**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **33**(400 MHz, CDCl₃+DMSO-*d*₆)

¹³C NMR Spectra of compound **33**(100 MHz, DMSO- d_6)

¹H NMR Spectra of compound **34**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound $34(100 \text{ MHz}, \text{DMSO-}d_6)$

¹H NMR Spectra of compound **35**(400 MHz, CDCl₃+DMSO-*d*₆)

¹³C NMR Spectra of compound **35**(100 MHz, DMSO- d_6)

¹H NMR Spectra of compound **36**(400 MHz, CDCl₃+DMSO-*d*₆)

¹³C NMR Spectra of compound **36**(100 MHz, DMSO- d_6)

¹H NMR Spectra of compound $37(400 \text{ MHz}, \text{DMSO-}d_6)$

¹H NMR Spectra of compound **38**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **38**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **39**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **39**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound 40(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **40**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **41**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **41**(100 MHz, CDCl₃+DMSO-*d*₆)

¹H NMR Spectra of compound **42**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **42**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **43**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **43**(100 MHz, CDCl₃)

¹H NMR Spectra of compound 44(400 MHz, CDCl₃)

¹³C NMR Spectra of compound 44(100 MHz, DMSO- d_6)

¹H NMR Spectra of compound **45**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **45**(100 MHz, CDCl3+DMSO-*d*₆)

¹H NMR Spectra of compound 46(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **46**(100 MHz, CDCl₃)

¹H NMR Spectra of compound 47(400 MHz, CDCl₃)

¹³C NMR Spectra of compound **47**(100 MHz, CDCl₃)

¹H NMR Spectra of compound **48**(400 MHz, CDCl₃)

¹³C NMR Spectra of compound $48(100 \text{ MHz}, \text{DMSO-}d_6)$

¹³C NMR Spectra of compound **49**(100 MHz, CDCl₃+DMSO-*d*₆)

DEPT-135 Spectra of compound 47(100 MHz, CDCl₃)

HRMS of compound 14

HRMS of compound 15

HRMS of compound 17

HRMS of compound 19

HRMS of compound 20

HRMS of compound 21

HRMS of compound 22

HRMS of compound 23

HRMS of compound 25

HRMS of compound 27

HRMS of compound 30

HRMS of compound 32

HRMS of compound 34

HRMS of compound **36**

HRMS of compound 38

HRMS of compound 40

HRMS of compound 42

HRMS of compound 45

HRMS of compound 49

IC₅₀ calculation- We have calculated the IC₅₀ value by the Graph Pad Prism software version 5.01. For the calculation of IC₅₀ values we have performed antiligase activity of compound 23 at 100, 50, 25, 12.5, and 6.25 μ M concentrations whereas antiproliferative activity was performed at 50, 25, 12.5, 6.25 and 3.12 μ M concentrations. At the different concentration of compound 23, percent of antiligase and antiproliferative activities were determined and IC₅₀ values were calculated by plotting the data log inhibitor vs. normalised response using Graph Pad Prism. The graphs have been shown in figure S2. We have found 24.9±1.8 μ M (Figure S2A) and 8.7±1.9 μ M (Figure S2B) IC₅₀ values for antiligase and antiproliferative activities of compound 23 respectively.

Figure S2. Graphs for IC_{50} calculation (A) for antiligase activity (B) for antiproliferative activity.

Graph for antiligase IC50 calculation

Graph for antilproliferative IC₅₀ calculation