Electronic Supplementary Information (ESI)

Superparamagnetic Nalidixic acid grafted Magnetite (Fe₃O₄/NA) for Rapid and Efficient Mercury Removal from Water

Syed M. Husnain^a, Jae-Hawn Kim^a, Chung-Seop Lee^a, Yoon-Young Chang^b, Wooyong Um^{c,d}, Yoon-Seok Chang^{a*}

Fig. S1 FTIR of Fe₃O₄, Fe₃O₄/NA and NA

The FTIR spectra of pure NA were plotted in the wavenumbers ranging from 1000 to 1750 cm⁻¹ along with Fe_3O_4 and Fe_3O_4/NA as illustrated in Fig. S1. Strong bands centered at 1440 and 1467 cm⁻¹ corresponds to symmetrical stretching of C=C and C=N vibrations in pure NA, these two

vibrations bands shifted to 1450 and 1490 cm⁻¹, respectively after the NA grafting onto Fe₃O₄. The band located at 1630 cm⁻¹ in Fe₃O₄/NA might be ascribed to dual interaction of C=C asymmetric ring stretching vibrations at 1617 cm⁻¹ and/or C=O carboxylic acid stretching at 1700 cm⁻¹ of NA. Minor shift to higher wavenumbers was also noticed after grafting of NA onto Fe₃O₄ for the bands ascribed to C-H deformation (at 1130 and 1253 cm⁻¹) and COH deformation at 1295 cm⁻¹. All aforementioned observations confirm the existence of strong chemical interactions of NA with Fe₃O₄ surface.

Fig. S2 Magnified hysteresis loop of Fe₃O₄/NA

Fig. S3 (a) Relationship between the initial concentration of Hg(II) and the equilibrium adsorption (*Q*). Langmuir (b) and Freundlich (c) isotherm of adsorption of Hg(II) onto the Fe_3O_4/NA

Fig. S4 Thermodynamic study of adsorption of mercury onto Fe_3O_4/NA

	Bare Fe ₃ O ₄	Fe ₃ O ₄ /NA
Pseudo-first-order model		
<i>k</i> 1 (min ⁻¹)	0.04	0.09
$q_{e,exp}$ (mg g ⁻¹)	0.31	0.80
<i>q_{e,cal}</i> (mg g ⁻¹)	2.13	3.60
R ²	0.92	0.97
Pseudo-second-order model		
<i>k</i> ₂ (g mg ⁻¹ min ⁻¹)	0.6	0.35
<i>q_{e,exp}</i> (mg g ⁻¹)	2.14	3.63
<i>q_{e,cal}</i> (mg g ⁻¹)	2.13	3.60
R ²	0.99	0.99

Table S1 Kinetic parameters for Hg(II) adsorption on bare Fe_3O_4 and Fe_3O_4/NA

Adsorbent	Capacity	Temperature	рН	Time	Reference
Clay	0.23 mg g ⁻¹	293 K	5.5	12-14 h	50
Fly ash	2.50 mg g ⁻¹	303 K	3.5-4.5	3 h	51
Rice husk ash	6.72 mg g ⁻¹	303 K	5.6-5.8	30 min	52
Activated Carbon	5.20 mg g ⁻¹	283 K	n.a	500 min	53
Magnetic NPs modified with 2- mercaptobenzothiazole	0.59 mg g ⁻¹	298 K	9	4 min	54
Thiol-modified magnetite beads-porous materials	14 mg g ⁻¹	n.a	2	1 h	55
Silica-graft dimethyl amino ethyl methacrylate	8.10 mg g ⁻¹	n.a	4	24 h	56
Naphthalimide- functionalized magnetic nanosensor	5.6 mg g ^{.1}	298 K	n.a	Overnight ~12 h	57
Dithiocarbamate grafted on magnetite particles	142-206 mg g ⁻¹	295 К	7	96 h	58
Nalidixic acid grafted Magnetic nanoparticles	9.52 mg g ⁻¹	298 K	6	1 h	This Study

Table S2 Comparison of adsorption capacity of mercury for different adsorbents

Temperature (K)	Δ <i>G°</i> (kJ mol⁻¹)	Δ <i>H</i> ° (kJ mol⁻¹)	Δ <i>S°</i> (J mol ⁻¹ K ⁻¹)
298	-4.91	-9.63	-15.73
313	-4.76		
323	-4.50		

Table S3 Thermodynamic parameters for adsorption of Hg(II) at different temperature

Table S4 Physicochemical properties of groundwater

	Groundwater
рН	7.882
DO (mg/L)	3.07
E _h (mV)	259.2
Mg ²⁺ (mg/L)	8.34
Ca^{2+} (mg/L)	59.33
Na^{+} (mg/L)	17.58
K^{+} (mg/L)	2.69
Cl (mg/L)	39.05
NO (mg/L)	5.38
SO ²⁻ (mg/L)	9.05
F⁻ (mg/L)	<1