Aminal linked inorganic-organic hybrid nanoporous materials (HNMs) for CO₂ capture and H₂ storage applications

Raeesh Muhammad, Pawan Rekha and Paritosh Mohanty*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand - 247667, INDIA

*Email: pmfcy@iitr.ac.in, paritosh75@gmail.com

FT-IR and NMR spectroscopic investigation of compound-I

FT-IR: 1702 cm⁻¹ (C=O), 1570 cm⁻¹ (aromatic C=C), 1209 and 1160 cm⁻¹ (P=N), 1015 cm⁻¹ (P-O-C) ¹H NMR (400 MHz, CDCl₃, 298 K): δ 9.95 (s, COH), 7.75 (d, Ar–H), 7.17 (d, Ar–H) ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 190 (C=O), δ 155 (ArCO), δ 134 (ArCH), δ 132 (ArCH) and δ 122 (ArC) ³¹P NMR (161 MHz, CDCl₃, 298 K): δ 7.04 (s) Elemental analysis: Theoretical formula: C₄₂H₃₀N₃O₁₂P₃ C, 58.55; H, 3.51; N, 4.88 Experimentally observed formula: C, 58.09; H, 3.50; N, 4.85

Scheme S1: Reaction scheme for the synthesis of compound - I.

Scheme S2: Reaction scheme for the synthesis of HNMs.

Figure S1: ¹H NMR spectrum. ¹H NMR spectrum of compound-I collected in CDCl₃.

Figure S2: ¹³C NMR spectrum. ¹³C NMR spectrum of compound-I collected in CDCl₃.

Figure S3: ³¹P NMR spectrum. ³¹P NMR spectrum of compound-I collected in CDCl₃.

Table S1:	Assignment	of F	T-IR	Bands
-----------	------------	------	------	-------

Bands (cm ⁻¹)	Assignment	References
3420	Aminal N-H stretching	S2, S3
2930	Aliphatic C-H stretching	S2, S3
1650	NH ₂ deformation band	S2, S3
1600	C=C aromatic ring stretching	S2, S3, S4
1550	quadrant stretching of s-triazine ring	S2
1480	semicircle stretching of s-triazine ring	S2
1360	Ring and side chain CN stretching	S3
1200-1160	vas(P=N-P),	S1
960	v _{as} (P-O-P) vibration	S1, S6
814	Ring breathing ring def. (out of plane)	S2
520	δ (P=N-P) vibration	S1, S6

Peaks (ppm)	Assignment	References
166	C of triazine ring (C-1)	S2
155	C of benzene ring (C-2)	S1
135	C of benzene ring (C-3)	S3, S4
131	C of benzene ring (C-4)	S3, S4
120	C of benzene ring (C-5)	S3
55	tertiary carbon (C-6)	S2, S5

Table S2 (a): Assignment of ¹³C CP-MAS NMR resonance signals for HNM-1

Table S2 (b): Assignment of ³¹P CP-MAS NMR resonance signal for HNM-1

Peaks (ppm)	Assignment	References
9.6	P of PNC moiety	S1

Table S3: Elemental Analysis for HNMs

Calculated for C₇₈H₆₆N₇₅O₃P₃; N: 46.84, C: 41.77, H: 2.97, O: 4.28, P: 4.14.

Sample ID	Observed						
	Ν	С	Н	0			
HNM-1	42.16	40.18	4.46	5.25			
HNM-2	41.14	40.28	5.69	5.52			
HNM-3	36.13	31.78	6.20	6.23			

Figure S5: HNMs thermogravimetry thermograms measured in air. TGA and DTG thermograms of (a) HNM-1, (b) HNM-2 and (c) HNM-3 measured in air with a heating rate of 5 K/min.

Figure S6: XRD spectra of HNMs. X-ray diffraction patterns of (a) HNM-1, (b) HNM-2 and (c) HNM-3.

Figure S7: N₂ **sorption isotherm**; N₂ sorption isotherm of HNM-2 and HNM-3, measured at 77 K.

Figure S8: (a) and (b) FE-SEM image of HNM-2 and HNM-3, respectively.

Figure S9: DFT pore size distribution of HNMs. Pore size distribution of HNM-1, HNM-2 and HNM-3 calculated from the N_2 sorption isotherm measured at 77 K using the Density Functional Theory (DFT) method.

Figure S10: Multi-Point BET plot and Langmuir plot. (a) Multi-Point BET plot of HNM-1 and (b) Langmuir plot of HNM-1 calculated from the N_2 isotherm measured at 77 K.

Figure S11: Multi-Point BET plot and Langmuir plot. (a) Multi-Point BET plot of HNM-2 and (b) Langmuir plot of HNM-2 calculated from the N_2 isotherm measured at 77 K.

Figure S12: Multi-Point BET plot and Langmuir plot. (a) Multi-Point BET plot of HNM-3 and (b) Langmuir plot of HNM-3 calculated from the N_2 isotherm measured at 77 K.

	Surface Ar	rea From N ₂ Sorptio $(m^2 g^{-1})$	DFT and Mo	Total		
Sample		(mg)	Surface	Surface Pore		
			Area (m ²	volume	$(cm^3 g^{-1})$	
			g-1)	$(cm^3 g^{-1})$		
	BET	External Surface	Langmuir	N ₂ at 77K	N_2 at 77K	N ₂ at
		Area				77K
HNM-1	976	603	1237	967	2.11	1.05
HNM-2	807	493	969	861	1.83	0.86
HNM-3	513	403	517	1.03	0.67	

Figure S13: HNM- 2, 3 CO₂ isotherms; (a) CO₂ sorption isotherms at 273 and (b) 298 K, respectively.

Figure S14: Isosteric heat of adsorption of HNMs. Isosteric heats of adsorption for CO₂ have been calculated from CO₂ isotherms collected at 273 and 298 K.

Figure S15: HNM-2, 3 CH₄ isotherms; (a) CH₄ sorption isotherms at 273 and (b) 298 K, respectively.

Figure S16: HNM-1 gas sorption selectivities. Selectivities of CO₂:N₂ and CO₂:CH₄ for HNM-1 at 273 K.

Figure S17: HNM-1 gas sorption selectivities. Selectivities of CO₂:N₂ and CO₂: CH₄ for HNM-1 at 298 K.

Figure S18: HNM-2 gas sorption selectivities. Selectivities of CO₂:N₂ and CO₂:CH₄ for HNM-2 at 273 K.

Figure S19: HNM-2 gas sorption selectivities. Selectivities of CO₂:N₂ and CO₂:CH₄ for HNM-2 at 298 K.

Figure S20: HNM-3 gas sorption selectivity. Selectivity of CO₂:N₂ and CO₂:CH₄ for HNM-3 at 273 K.

Figure S21: HNM-3 gas sorption selectivities. Selectivity of CO₂:N₂ and CO₂:CH₄ for HNM-3 at 298 K.

Sample	CO ₂ uptake			(CH ₄ uptak	e	Selectivity				H ₂ uptake ^e
ID	wt % ^a	wt % ^b	Q _{st}	wt $\%^a$	wt % ^b	Q _{st}	CO_2/N_2^c	CO ₂ /CH ₄ ^c	CO_2/N_2^d	CO_2/CH_4^d	wt%
HNM-1	18.9	12.3	33.0	1.79	0.88	25.7	62	14	28	11	1.65
HNM-2	13.2	8.16	35.9	1.48	0.79	23.0	67	17	35	12	1.35
HNM-3	9.5	6.08	32.0	1.10	0.63	25.2	44	9	25	10	0.92

Table S5: Summary of gas adsorption properties of HNMs at low pressure

^a273 K, 1 bar; ^b298 K, 1 bar; ^c273 K, 1 bar; ^d298 K, 1 bar; ^e77 K, 1 bar; unit of Q_{st}: kJ mol⁻¹. Selectivity at 273 and 298 K.

Table S6: Gas adsorption properties of selected porous materials at low pressure

Summary of gas adsorption properties of porous materials at low pressure

Sample ID	Surface Area ^a		CO ₂	CO ₂ uptake ^c Selec		ivity	Reference
	BET	Langmuir	wt %	Q _{st}	CO ₂ /N ₂	CO ₂ /CH ₄	
PAN-1	925	1366	14.8	36.5	61	12	S3
TBILP-1	330	-	11.7	35	63	9	S4
TBILP-2	1080	-	22.8	29	40	7	S4
APOP-3	1402	1779	19.9	27.5	27.5	5.3	S5
PHM	453	620	8.05	26	-	-	S6
PAF-3	2932	3857	15.3	19.2	87	30	S7
BLP-1(H)	1360	1744	7.4	25.3	-	-	S8
BLP-(12)H	2244	2866	12.8	25.2	-	-	S8
PECONF-3	851	969	15.35	24.9	77	10	S9
PPF-1	1740	2157	26.7	25.6	14.5 (1 bar) 273 K	11 (1 bar) 273 K	S10
BILP-4	1135	1486	23.5	28.7	79	10	S11
<i>fl</i> -CTF350	1235	-	18.8	32.7	27	-	S12
C-NP	946	-	13.6	28.8	29	98	S13

^aUnit: m² g⁻¹. ^bUnit: cm³ g⁻¹. ^c273 K, 1 bar; unit of Q_{st}: kJ mol⁻¹

References

- S1. R. Kagit, M. Yildirim, O. Ozay, S. Yesilot and H. Ozay, Inorg. Chem., 2014, 53, 2144-2151.
- S2. M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng and K. Mullen, J. Am. Chem. Soc., 2009, 131, 7216-7217.
- S3. G. Li, B. Zhang, J. Yan and Z. Wang, *Macromolecules*, 2014, 47, 6664-6670.
- A. K. Sekizkardes, S. Altarawneh, Z. Kahveci, T. İslamoğlu and H. M. El-Kaderi, *Macromolecules*, 2014, 47, 8328-8334.
- S5. W. C. Song, X. K. Xu, Q. Chen, Z. Z. Zhuang and X. H. Bu, Polym. Chem., 2013, 4, 4690-4696.
- S6. P. Rekha, U. Sahoo and P. Mohanty, RSC Adv., 2014, 4, 34860-34863.
- S7. T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jinga and S. Qiu, Energy Environ. Sci., 2011, 4, 3991-3999.
- S8. K. T. Jackson, M. G. Rabbani, T. E. Reich and H. M. El-Kaderi, Polym. Chem., 2011, 2, 2775-2777.
- S9. P. Mohanty and L. D. Kull, K. Landskron, Nature Commun., 2011, 2, 401-406.
- S10. Y. Zhu, H. Long and W. Zhang, Chem. Mater., 2013, 25, 1630-1635.
- S11. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511-1517.
- S12. S. Hug, M. B. Mesch, H. Oh, N. Popp, M. Hirscher, J. Senker and B. V. Lotsch, J. Mater. Chem. A, 2014, 2, 5928-5936.
- S13. M. Saleh and K. S. Kim, RSC Adv., 2015, 5, 41745 41750.