Supporting information

Synthesis of silicon-doped reduced graphene oxide and its applications in dye-sensitive solar cells and supercapacitors

Zegao Wang, abc Yuanfu Chen, a Pingjian Li, a Jiarui He, Wanli Zhang, Zheng Guo, Yanrong Li, and Mingdong Dong

^aState Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China. E-mail: yfchen@uestc.edu.cn; lipingjian@uestc.edu.cn

^bInterdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark

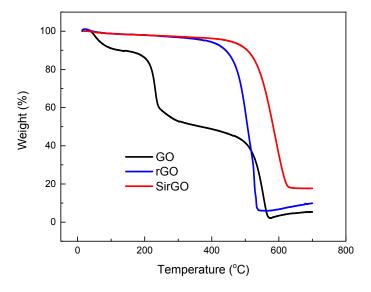


Figure S1. TGA curves of GO, rGO and Si-rGO

^cDepartment of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark

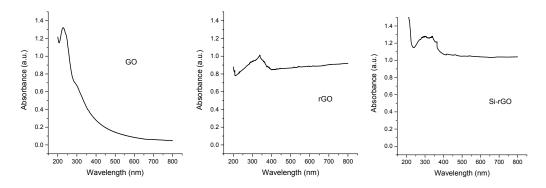


Figure S2. UV-vis absorption spectra of GO, rGO and Si-rGO. The spectrum of GO has a peak at 235 nm which is related to π - π * electron transition. After reduction, a wider peak would be observed at 300 nm, which shows the electronic conjugation of GO was restored. The spectrum of Si-rGO also has a wider peak at 300 nm, which is similar with rGO. The un-sharp of the peak for rGO and Si-rGO should be originated from their poor dispersibility in water.

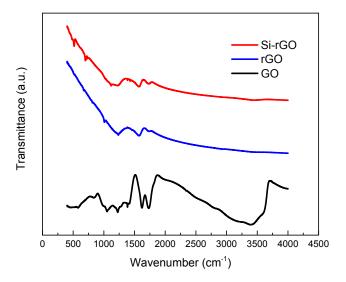


Figure S3. FTIR spectra of GO, rGO and Si-rGO. FTIR bands at 1045, 1221, 1405, 1621 and 1734 were observed for GO. The wider band at 3400 cm⁻¹ is corresponded to -OH group, which disappear in rGO and Si-rGO. Compared to rGO, there is no observed new band detected in Si-rGO, which should be caused by the lower Si doping concentration.