Electronic supplementary information (ESI)

for

Aggregation of layered double hydroxide nanoparticles in the presence of heparin: Towards highly stable delivery systems

Marko Pavlovic,^a Li Li,^b Francois Dits,^a Zi Gu,^b Monika Adok-Sipiczki^a and Istvan Szilagyi*^a

^a Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, CH-1205, Switzerland

^b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD-4072, Australia

* Corresponding author. E-mail: istvan.szilagyi@unige.ch. Phone: + 41 22 3796031.

Conversion of the electrophoretic mobility data

The electrophoretic mobility (*u*) was measured with a ZetaNano ZS (Malvern) device. The electrokinetic potential (ζ) was calculated from these data using Smoluchowski's equation¹ as shown below:

$$\zeta = \frac{u\eta}{\varepsilon\varepsilon_0} \qquad \qquad \wedge^* \text{ MERGEFORMAT (S1)}$$

where η is the viscosity of water, ε_0 is the permittivity of vacuum and ε is the dielectric constant. The surface charge density (σ) was determined by fitting ζ at different ionic strengths with the Debye-Hückel charge-potential relationship¹ as follows:

$$\sigma = \varepsilon \varepsilon_0 \kappa \zeta \qquad \qquad \wedge^* \text{MERGEFORMAT (S2)}$$

where κ is the inverse Debye length¹ which contains the contribution of all ionic species and can be defined as:

$$\kappa = \sqrt{\frac{2N_A e^2 I}{\varepsilon \varepsilon_0 k_B T}}$$
 * MERGEFORMAT (S3)

where N_A is the Avogadro number, e is the elementary charge, I is the ionic strength, k_B is the Boltzmann constant and T is the absolute temperature.

Principles of dynamic light scattering (DLS)

The hydrodynamic radius (R_h) of the LDH particles was measured with DLS using a compact goniometer system (ALV/CGS-3) at 90° scattering angle. The correlation function ($g^1(\tau)$) was accumulated for 20 seconds and a second cumulant fit was used:²

$$\ln[g^{1}(\tau)] = \ln B - \overline{\Gamma}\tau + \frac{\mu_{2}\tau^{2}}{2} \qquad \land * \text{ MERGEFORMAT (S4)}$$

where $\overline{\Gamma}$ is the average decay constant, *B* is the baseline originating from the scattering setup, τ is the delay time of the correlation and μ_2 is the second cumulant variance which can be used to calculate the polydispersity index (*PDI*) of the sample:

$$PDI = \frac{\mu_2}{\overline{\Gamma}^2}$$
 * MERGEFORMAT (S5)

The translational diffusion coefficient (*D*) of the particles, which undergo Brownian motion, is related to $\overline{\Gamma}$ in the following equation:

$$D = \frac{q^2}{\overline{\Gamma}} \qquad \qquad \land * \text{ MERGEFORMAT (S6)}$$

where q is the magnitude of the scattering vector. Finally, R_h can be then calculated with the Stokes-Einstein equation:

$$R_{h} = \frac{k_{B}T}{6\pi\eta D} \qquad \qquad \land * \text{ MERGEFORMAT (S7)}$$

The R_h measured for the platelet-like LDH particles is equal to the radius of an equivalent sphere.

Interpretation of X-ray diffraction (XRD) data

Powder XRD patterns of solid LDH samples were recorded on a Stadi-P (Stoe) instrument. The Bragg equation was used to calculate the *d*-spacing values and lattice parameters:³

$$n\lambda = 2d\sin\theta_{R}$$
 * MERGEFORMAT (S8)

where *n* is an integer (in general it is 1), λ is the wavelength of the laser, *d* is the lattice spacing and θ_B is the Bragg angle. The average thickness of the particles (v) was calculated using the Scherrer's equation:

$$v = K\lambda / \beta \cos \theta_{B}$$
 * MERGEFORMAT (S9)

where K is the shape factor (0.89 was used in the calculation) and β is the line broadening at the full widths at half maximum in radian obtained by applying Gaussian fits to the peaks.

References

- 1 D. F. Evans and H. Wennerstrom, *The Colloidal Domain*, John Wiley, New York, 1999.
- 2 P. A. Hassan, S. Rana and G. Verma, *Langmuir*, 2015, **31**, 3-12.
- 3 D. G. Evans and R. C. T. Slade In *Layered Double Hydroxides*; X. Duanand D. G. Evans, Eds. 2006; Vol. 119, p 1-87.

Fig. S1 TEM images of LDH2 particles at different heparin doses: 1 mg/g which refers to low dose and stable samples (a), 5 mg/g near the IEP with aggregated samples (b) and 30 mg/g where the particles reversed their charge and form stable dispersion (c).