SUPPLEMENTARY INFORMATION

Towards understanding the N_{TB} phase: a combined experimental, computational and spectroscopic study

Trpimir Ivšić¹, Marijana Vinković², Ute Baumeister³, Ana Mikleušević¹ and Andreja Lesac^{1*}

¹Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
²NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
³Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle,Germany
*Corresponding author: andreja.lesac@irb.hr

X-Ray measurements

Figure S1. 2D XRD pattern of **CBI-9-ICB**; (a) in the N phase at 150 °C, (b) in the N_{TB} phase at 116 °C, (c) d value of the intensity maximum of the inner scattering at about 15 Å depending on the temperature

	CBI-7-ICB				CBI-9-ICB			
<i>T</i> /⁰C	inne	r halo	outer halo		inner halo		outer halo	
	2 <i>θ</i> /°	d∕Å	2 <i>0</i> /°	d/Å	2 <i>θ</i> /°	d∕Å	2 <i>0</i> /°	d/Å
114	6.530	13.54	20.35	4.36				
116	6.528	13.54	20.31	4.37	6.001	14.73	20.33	4.37
118	6.443	13.72	20.31	4.37	5.907	14.96	20.24	4.39
120	6.330	13.96	20.27	4.38	5.853	15.10	20.26	4.38
122	6.294	14.04	20.27	4.38	5.886	15.02	20.26	4.38
124	6.303	14.02	20.31	4.37	5.814	15.20	20.24	4.39
126	6.252	14.14	20.25	4.38	5.750	15.37	20.24	4.39
128					5.739	15.40	20.20	4.39
130	6.319	13.99	20.21	4.39	5.760	15.34	20.22	4.39
135	6.310	14.01	20.17	4.40	5.849	15.11	20.13	4.41
140	6.355	13.91	20.12	4.41	5.806	15.22	20.06	4.43
145	6.402	13.81	20.06	4.43	6.015	14.69	20.07	4.42
148	6.469	13.66	20.00	4.44				
150					6.058	14.59	19.95	4.45
152					6.083	14.53	20.00	4.44

Table S1: Diffraction angles 2θ and d values for the intensity maxima of the small and wide angleX-ray diffraction of CBI-7-ICB and CBI-9-ICB

Liquid state NMR measurements.

Complete assignment of the compound **BB_7-4** is based on 1D and 2D homo- and heteronuclear NMR spectra and shown in Table S2. The spectra were taken at 50 °C due to low solubility of compound in DMSO-d₆ at room temperature.

Table S2. ¹H and ¹³C NMR chemical shifts $(\delta/\text{ppm})^a$ recorded in DMSO-d₆ solution, H-H and C-H coupling constants^b of compound **BB_7-4** in (50 °C) and ¹H chemical shifts of the neat compound at 117 °C.

Atom		¹H (δ/ppm)		¹³ C (δ/ppm)	¹ H (δ/ppm)	$\Delta \delta/\text{ppm}^{c}$
1	δ	0.95 (6)	δ	13.25	0.13	0.82
	${}^{3}J_{ m HH}$	7.38 (t)	$J_{ m CH}$	125.25 (q)		
2	δ	1.46 (4)	δ	18.33	0.60	0.86
	${}^{3}J_{ m HH}$	7.42 (sextet)	$J_{ m CH}$	125.34 (t)		
3	δ	1.74 (4)	δ	30.29	0.85	0.89
	${}^{3}J_{ m HH}$	6.97 (pentet)	$J_{ m CH}$	125.31 (t)		
4	δ	4.09 (4)	δ	67.55	3.00	1.09
	${}^{3}J_{ m HH}$	6.48 (t)	$J_{ m CH}$	144.52 (t)		
5			δ	163.06		
				S		
6	δ	7.09 (4)	δ	114.49	6.02	1.07
	${}^{3}J_{ m HH}$	8.88 (d)	$J_{ m CH}$	162.92 (d)		
7	δ	8.05 (4)	δ	131.71	7.20	0.85
	${}^{3}J_{ m HH}$	8.88 (d)	$J_{ m CH}$	163.08 (d)		
8			δ	120.54		
				S		
9			δ	163.69		
				S		
10			δ	152.11		
				S		
11	δ	7.30 (4)	δ	121.80	6.43	0.87
	${}^{3}J_{ m HH}$	8.58 (d)	$J_{ m CH}$	164.50 (d)		
12	δ	7.79 (4)	δ	128.59	6.91	0.88
	${}^{3}J_{ m HH}$	8.58 (d)	$J_{ m CH}$	162.92 (d)		
13			δ	133.71		
				S		
14	δ	8.34 (2)	δ	159.07	7.37	0.97
		S	$J_{ m CH}$	158.54 (d)		
15	δ	3.57 (4)	δ	60.06	2.79	0.70
	${}^{3}J_{ m HH}$	6.84 (t)	$J_{ m CH}$	131.27 (t)		
16	δ	1.64 (4)	δ	30.10	0.96	0.68
	${}^{3}J_{ m HH}$	6.76 (pentet)	$J_{ m CH}$	126.32 (t)		
17 and 18	δ	1.34-1.40 (6)	δ	26.38 and 28.21	0.67	0.70
		m				

^a Referred to TMS. Number of protons in brackets. ^b (s) singlet, (d) doublet, (t) triplet, (q) quartet, (m) multiplet. ^c $\delta/\text{ppm}(\text{solution}) - \delta/\text{ppm}$ at 117 °C

Figure S2. ¹H NMR spectra of (a) CBI-7-ICB and (b) BB_7-4 in CDCl₃ solution.

Figure S3. (a) COSY spectrum of BB_7-4 in DMSO- d_6 solution, (b) COSY spectrum of the neat BB_7-4 at 117 °C.

Figure S4. NOESY spectrum of **BB_7-4** dissolved in (a) DMSO- d_6 at 50 °C (b) CDCl₃ at -40 °C