S	Supporting Information
	Tailoring SWIR Emission in Tri-Lanthanide-Doped CaF ₂ Nanoparticle Xinyu Zhao and Mei Chee Tan*
	Engineering Product Development, Singapore University of Technology and D Singapore, 8 Somapah Road, Singapore 487372
k	

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

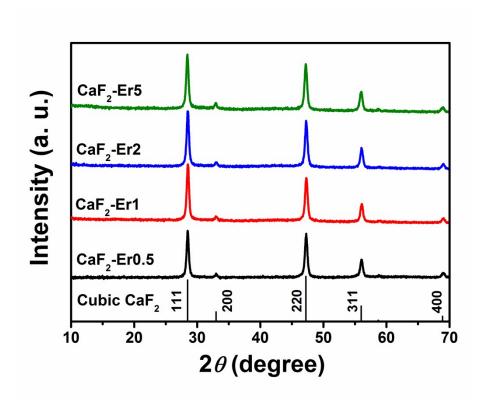


Figure S1. XRD patterns of CaF₂ nanoparticles with Yb dopant concentration 20 mol% synthesized using different Er concentrations ranging from 0.5 to 5 mol%. Reference powder diffraction files of cubic CaF₂ from JCPDS 35-0816 was used.

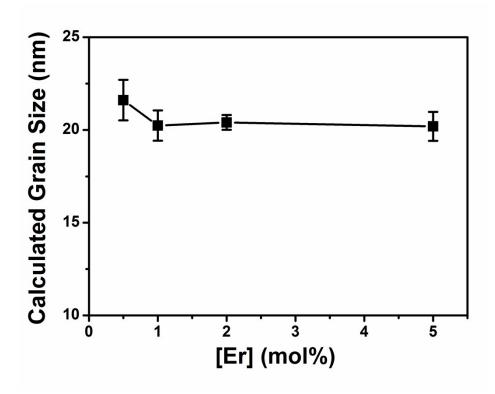


Figure S2. Estimated grain sizes using the Scherrer equation from XRD patterns of CaF₂:Yb,Er nanoparticles with Er doping concentration ranging from 0.5 to 5 mol%

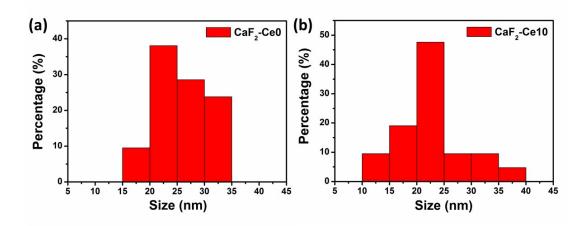


Figure S3. Size distributions of CaF_2 -Ce0 (a) and CaF_2 -Ce10 (b) samples measured by calculating 30 particles form TEM images. The average size of CaF_2 -Ce0 and CaF_2 -Ce10 samples are $\sim 25.7 \pm 5.1$ and $\sim 23.0 \pm 5.5$ nm.

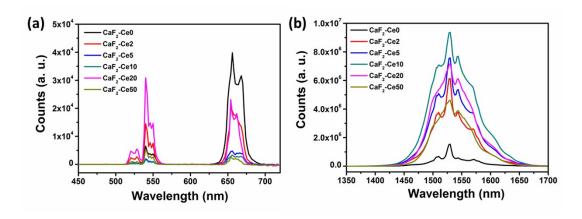


Figure S4. Up-converting visible (a) and down-shifting infrared emissions (b) of CaF₂:Yb,Er nanoparticles with Ce doping concentration ranging from 0 to 50 mol%.

Table S1. Atomic ratio of Ca, F and Ce element of CaF_2 nanoparticles calculated from EDX spectrum.

Sample	Ca	F	Ce
CaF_2 : $Yb_{20}Er_2Ce_0$	1.00	2.94	0
CaF ₂ :Yb ₂₀ Er ₂ Ce ₁₀	1.00	3.81	0.16

Table S2. Fitted decay constants of time resolved emission spectra at 1530 nm for CaF_2 nanoparticles using a double exponential equation.

Sample	A_1	$\tau_1 (\mu s)$	Standard	A_2	$\tau_2(\mu s)$	Standard
	(%)		error	(%)		error
CaF ₂ :Yb ₂₀ Er ₂ Ce ₀	74.8	292.2	1.94	25.2	2300.3	11.35
CaF ₂ :Yb ₂₀ Er ₂ Ce ₂	55.2	574.4	4.10	44.8	3014.9	10.67
CaF ₂ :Yb ₂₀ Er ₂ Ce ₅	50.9	784.0	5.78	49.1	3826.5	14.60
CaF ₂ :Yb ₂₀ Er ₂ Ce ₁₀	51.2	3883.0	14.66	48.8	810.2	6.41
CaF ₂ :Yb ₂₀ Er ₂ Ce ₂₀	47.6	479.8	4.05	52.4	1916.2	5.90
CaF ₂ :Yb ₂₀ Er ₂ Ce ₅₀	48.2	1461.9	5.36	51.8	400.9	3.40
CaF_2 : $Er_2Ce_{10}Yb_{10}$	45	3953.0	15.50	55	771.8	5.17
CaF_2 : $Er_2Ce_{10}Yb_{20}$	51.2	3883.0	14.66	48.8	810.2	6.41
CaF ₂ :Er ₂ Ce ₁₀ Yb ₃₀	42.6	616.6	5.39	57.4	2606.0	7.60