Supporting Information

Controlled synthesis of CaTiO₃:Ln³⁺ nanocrystals for luminescence and photocatalytic hydrogen production

Ling Meng, Kaifu Zhang, Kai Pan, Yang Qu* and Guofeng Wang*

Key Laboratory of Functional Inorganic Material Chemistry, Ministry ofEducation, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.

E-mail: copy0124@126.com;wanggf_w@163.com

Table S1. Effect of the Ca(CH₃COO)₂ andTi(OC₄H₉)₄contents and reaction solvent on the compositions of samples. (a, b) direct dried in air at 180 °Cfor 24 h and sintered at 600 °C for 2 h. (c, d, e, f, g) after hydrothermal treatment at 180 °C for 24 h, dried in air at 80 °Cfor 4 h, and sintered at 600 °C for 2 h.

Samples	Ca(CH ₃ COO) ₂	Ti(OC ₄ H ₉) ₄	Reaction solvent (30ml)	Treatment	Production
(a)	1.321 g	1.7 ml	ethylene glycol	Sol-gol	CaTiO ₃ + CaCO ₃
(b)	1,175 g	1.7 ml	ethylene glycol	Sol-gol	CaTiO ₃ + CaCO ₃
(c)	0.882 g	1.7 ml	ethylene glycol	hydrothermal	CaTiO ₃ + CaCO ₃
(d)	1.763 g	3.4 ml	ethylene glycol	hydrothermal	CaTiO ₃ + CaCO ₃
(e)	0.882 g	1.7 ml	ethanol	hydrothermal	CaTiO ₃ + CaCO ₃
(f)	1.763 g	3.4 ml	ethanol	hydrothermal	CaTiO ₃ + CaCO ₃
(g)	0.882 g	1.7 ml	methanol	hydrothermal	CaTiO ₃ + CaCO ₃

Figure S1. XRD patterns, SEM, TEM and HRTEM images ofCaTiO₃nanocrystals.

Figure S2. XRD patterns of samples prepared at different conditions (corresponding to the sample (a-g) of Table S1) .The peaks marked by asterisk (*) arise from calcite CaCO₃ particles (JCPDS 05-0586).

Figure S3.Mott–Schottky plots of CaTiO₃nanocrystals.

Figure S4. The XRD patterns of (a)CaTiO₃:Eu³⁺(0.5%), (b) CaTiO₃:Eu³⁺(5%), (c)CaTiO₃:Eu³⁺(15%) and (d)CaTiO₃:Eu³⁺(20%) nanocrystals.

Figure S5. The XRD patterns of (a)CaTiO₃: $Er^{3+}(0.5\%)$, (b) CaTiO₃: Er^{3+} (3%), (c) CaTiO₃: $Er^{3+}(5\%)$, (d) CaTiO₃: $Er^{3+}(10\%)$, (e) CaTiO₃: $Er^{3+}(15\%)$ and (f) CaTiO₃: $Er^{3+}(20\%)$ nanocrystals.

Figure S6. The EDX analysis results of (a) pure CaTiO₃, (b) CaTiO₃:Eu³⁺(10%), (c) CaTiO₃:Er³⁺(10%) nanocrystals.

Figure S7. N₂ adsorption–desorption isotherm curves and pore size distribution (inset) of (a) CaTiO₃nanocrystals, (b) CaTiO₃:Er³⁺(0.5%), (c) CaTiO₃:Eu³⁺(0.5%)nanocrystals.