RSC Advances

ESI 1 X-RAY FLUORESCENCE OF BA 110 (METAL OXIDES)

Analyte	Mass %
KCl	41.40
SiO ₂	32.01
K ₂ O	11.21
CaO	7.31
MgO	2.33
Al_2O_3	2.31
Fe_2O_3	1.63
P_2O_5	1.24
ZrO ₂	0.56
Total	100

 Table S1: X-Ray Fluorescence of Ba 110 (Metal Oxides)

ESI 2 ¹³C NMR OF ETHYLENE CARBONATE AND PROPYLENE CARBONATE

The time online analysis using ¹³C NMR (fig. 11 and 13) was carried out for both syntheses of EC and PC from 0 to 10 h. From the analysis it was found that the following δ ppm belongs to the following compounds. Ethylene glycol ¹³C NMR (CD₃OD, 125MHz) δ 64.4 (-CH₂-OH); Ethylene carbonate ¹³C NMR (CD₃OD, 125MHz) δ 158.1(C=O, carboxy), 66.7(-CH₂-O-); 2hyoxyethyl carbamate ¹³C NMR (CD₃OD, 125MHz) δ 156.9 (C=O, amides), 65.9 (-CH₂-O-), 59.7 (-CH₂-OH); oxazolidin-2-one ¹³C NMR (CD₃OD, 125MHz) δ 162.7 (C=O, amides), 66.4 (-CH₂-O-), 43.4 (-CH₂-N<); 3-(2-hydroxyethyl) oxazolidin-2-one ¹³C NMR (CD₃OD, 125MHz) δ 160.1 (C=O, amides), 65.5 (-CH₂-O-), 61.0 (-CH₂-OH), 55.8 (-CH₂-N<), 46.9 (-CH₂-N<); Urea 13 C NMR (CD₃OD, 125MHz) δ 163.9 (C=O, amides); propylene glycol 13 C NMR (CD₃OD, 125MHz) δ 69.3 (-CH₂-OH), 68.6 (>CH-OH), 19.9 (CH3-CH<, C primary); propylene carbonate ¹³C NMR (CD₃OD, 125MHz) δ 157.4 (C=O, carboxy), 75.7 (>CH-O-), 72.3 (-CH₂-O-), 19.6 (CH3-CH<, C primary); 2-hydroxypropyl carbamate ¹³C NMR (CD₃OD, 125MHz) δ 156.9 (C=O, amides), 70.7 (-CH₂-O-), 66.4 (-CH-OH), 30.3 (CH3-CH<, C primary); 4methyloxazolidin-2-one ¹³C NMR (CD₃OD, 125MHz) δ 159.0 (C=O, amides), 73.7 (>CH-N<), 66.9 (-CH₂-O-), 21.1 (CH₃-CH<, C primary); 3-methyloxazolidin-2-one ¹³C NMR (CD₃OD, 125MHz) & 158.9 (C=O, amides), 61.8 (-CH₂-O-), 46.8 (-CH₂-N<), 30.8 (CH₃-N<). Fig. 12 and 14 illustrates the compound and their respective ¹³C NMR labeling of δ ppm.

Fig. S1: ¹³C NMR Overlay of Time Online Analysis of Ethylene Carbonate Synthesis using Ethylene Glycol and Urea.

Fig. S2: ¹³C NMR of Reactants, Intermediate and Products Labelled in ppm for Ethylene Carbonate Synthesis.

Fig. S3: ¹³C NMR Overlay of Time Online Analysis of Propylene Carbonate Synthesis using Propylene Glycol and Urea.

Figure S4: ¹³C NMR of Reactants, Intermediate and Products Labelled in ppm for Propylene Carbonate Synthesis.