Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

1	Appendices				
2	Effect of algal species and light intensity on the				
3	performance of an air-lift-type microbial carbon				
4	capture cell with an algae-assisted cathode				
5					
6	Xia Hu, Jiti Zhou*, Baojun Liu				
7	Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of				
8	Education, School of Environmental Science and Technology, Dalian University of				
9	Technology, Linggong Road 2, Dalian 116024, China.				
10					
11					
12					
13					
14					
15					
16	*Corresponding author. Prof. Jiti Zhou, E-mail: jitizhou502@163.com.				
17					
18					
19					
20					

21 Calculations

22 Determination of CO₂ fixation rate

23 The CO₂ fixation rate
$$Rco_2$$
 (mg·L⁻¹·d⁻¹) was calculated as ¹:

24
$$R_{CO_2} = C_c \times P(\frac{M_{CO_2}}{M_C})$$

Where C_c is the carbon content in the biomass (%, w/w), which was measured by elemental analyzer (Elementar vario EL III); P is the biomass productivity (mg·L⁻¹·d⁻ 1); M_{CO_2} is the molar mass of CO₂; and M_c is the molar mass of carbon.

The biomass productivity $(P, \text{ mg} \cdot \text{L}^{-1} \cdot \text{d}^{-1})$ was calculated using the following equation:

 $P = \frac{\Delta X}{\Delta t}$

43 Determination of lipid content and productivity

The band around 3000-2800 cm⁻¹ of FTIR spectroscopy could well characterize the lipid content changes and thus be used to detect quantitatively the lipid content and its accuracy has been validated by traditional methods.^{2 3} For the determination of lipid content, egg phosphatidylcholine (egg-PC) was chose as an external standard. An infrared spectrometer (Bruker VERTEX 70, Germany) was used to record the characteristic peak areas of egg-PC at 2800-3000 cm^{- 1}, yielding the calibration equation:

51
$$A = 32.598T + 1.9709 \ (R = 0.993).$$

52 Where A is the characteristic peak areas of lipid; T(mg) is the weight of lipid.

53 The lipid content L_c (%) was calculated by the following equation:

54
$$L_c = \frac{T}{M} \times 100\%$$

55 Where T (mg) is the weight of lipid; M (mg) is the dry weight of microalgae. 56 The lipid productivity L_P (mg·L⁻¹·d⁻¹) was calculated by the following equation: 57 $L_p = P \times L_c$

58 Where $P (\text{mg} \cdot \text{L}^{-1} \cdot \text{d}^{-1})$ is the biomass productivity; L_c (%) is the lipid content of 59 microalgae.

- 60
- 61

- 63
- 64

69 Figure A.1. The standard curves for biomass concentration of Chlorella vulgaris (A)

70 and Chlorella sp. (B) against calibration of absorbance (690 nm)

- 72
- 73
- 74

]	Fable	A.1.	Pov

Table A.1. Power densities and lipid productivities in different reactors

Reactor type	Microalgal species	Power densities (mW·m ⁻²)	Lipid productivities (mg·L ⁻¹ ·d ⁻¹)	References
MCC	Chlorella vulgaris	24.4	NA	4
MCC	Chlorella vulgaris	14.4	NA	5
MCC	Chlorella sp.	3.35	NA	6
MCC	Scenedismus obliquus	30	NA	7
MCC	Chlorella + Phormidium	2.7	NA	8
ALMCC	Chlorella vulgaris	116.71	128.11	This study
ALP	Chlorella sp.	NA	121	9
ALP	Chlorella vulgaris	NA	94-146	10
ALP	Chlorella sorokiniana	NA	68-85	10
ALP	Chlorella vulgaris	NA	98	11
ALP	Ankistrodesmus sp.	NA	112	12

77

75 76

```
78
```

79 References

80 1. S. H. Ho, C. Y. Chen and J. S. Chang, Bioresour Technol., 2012, 113, 244-252.

- Y. Meng, C. Yao, S. Xue and H. Yang, Bioresour Technol., 2014, 151, 347 354.
- 83 3. A. M. Pistorius, W. J. DeGrip and T. A. Egorova-Zachernyuk, Biotechnol
 84 Bioeng., 2009, 103, 123-129.
- 85 4. X. Y. Wu, T. S. Song, X. J. Zhu, P. Wei and C. C. Zhou, Appl Biochem
 Biotech., 2013, 171, 2082-2092.
- 87 5. A. González del Campo, P. Cañizares, M. A. Rodrigo, F. J. Fernández and J.
- 88 Lobato, J Power Sources., 2013, 242, 638-645.
- 89 6. D. F. Juang, C. H. Lee and S. C. Hsueh, Bioresour Technol., 2012, 123, 23-29.
- 90 7. R. Kakarla and B. Min, Bioproc Biosyst Eng., 2014, 37, 2453-2461.
- 91 8. D. F. Juang, C. H. Lee, S. C. Hsueh and H. Y. Chou, Appl Biochem Biotech.,

- 92 2012, 167, 714-731.
- 93 9. A. B. Fulke, S. N. Mudliar, R. Yadav, A. Shekh, N. Srinivasan, R. Ramanan,
- K. Krishnamurthi, S. S. Devi and T. Chakrabarti, Bioresour Technol., 2010,
 101, 8473-8476.
- 96 10. C. Adams, V. Godfrey, B. Wahlen, L. Seefeldt and B. Bugbee, Bioresour
 97 Technol., 2013, 131, 188-194.
- 98 11. F. Han, J. Huang, Y. Li, W. Wang, J. Wang, J. Fan and G. Shen, Bioresour
 99 Technol., 2012, 118, 431-437.
- M. Do Nascimento, L. Dublan Mde, J. C. Ortiz-Marquez and L. Curatti,
 Bioresour Technol., 2013, 146, 400-407.