Electronic Supplementary Information

Synthesis, structure and properties of an octahedral dinuclearbased Cu₁₂ nanocage of trimesoyltri(*L*-alanine)

Zilu Chen,*a Xianlin Liu,a Anfu Wu, Yuning Liang, Xinyu Wang, Fupei Liang*ab

^a School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.

^b College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.

E-mail: zlchen@mailbox.gxnu.edu.cn, fliangoffice@yahoo.com

1
$C_{160}H_{296}Cu_{12}N_{24}O_{132}$
5430.69
103(2)
0.71073
Tetragonal
$P4_{2}2_{1}2$
33.227(2)
33.227(2)
24.546(2)
90
90
90
27100(4)
4
1.331
1.018
11312
0.27 imes 0.27 imes 0.27
3.02 to 25.01
181177
23864
0.0927
0.999
$R_1 = 0.0707, wR_2 = 0.1849$
$R_1 = 0.0912, wR_2 = 0.2030$
$0.776 \text{ and } -0.40\overline{4}$
0.066(13)

 Table S1 Crystallographic data of 1

Cu1-O34	1.060(1)	$C_{11}A_{-}O_{32}A$	1.952(5)
Cu1-0.054	1.909(4) 1.071(5)	Cu4-032A Cu4-017	1.952(5) 1.956(5)
Cu1 O1	1.971(3) 1.072(5)	Cu4-O17	1.950(5) 1.062(5)
Cu1 O12A	1.975(5) 1.080(5)	Cu4-020	1.902(5) 1.086(5)
Cut-OTSA Cu1-O27	1.969(3) 2.121(5)	Cu4-03	1.960(3) 2.261(5)
Current O37	2.131(3) 1.068(6)	Cu4-040	2.301(3)
Cu2-014A	1.908(0) 1.072(5)	Cu3-022A	1.904(5)
Cu2-011	1.9/3(5)	Cu5-07	1.967(5)
Cu2-035	1.9/4(5)	Cu5-025	1.967(5)
Cu2-O2	1.988(6)	Cu5-028	1.983(5)
Cu2-O38	2.3/9(5)	Cu5-O41	2.144(4)
Cu3-O16	1.944(5)	Cu6-O29	1.956(6)
Cu3-O19	1.965(5)	Cu6-O26	1.960(5)
Cu3-O31A	1.975(5)	Cu6-O8	1.966(5)
Cu3-O4	1.999(5)	Cu6-O23A	1.996(5)
Cu3-O39	2.222(5)	Cu6-O42	2.410(5)
O34-Cu1-O10	169.47(19)	O32A-Cu4-O17	89.8(2)
O34-Cu1-O1	88.6(2)	O32A-Cu4-O20	89.8(2)
O10-Cu1-O1	88.6(2)	O17-Cu4-O20	166.1(2)
O34-Cu1-O13A	90.7(2)	O32A-Cu4-O5	167.56(19)
O10-Cu1-O13A	89.9(2)	O17-Cu4-O5	89.1(2)
01-Cu1-O13A	167.7(2)	O20-Cu4-O5	88.3(2)
O34-Cu1-O37	97.98(18)	O32A-Cu4-O40	94.5(2)
O10-Cu1-O37	92.41(19)	O17-Cu4-O40	97.9(2)
O1-Cu1-O37	96.0(2)	O20-Cu4-O40	96.0(2)
O13A-Cu1-O37	96.3(2)	O5-Cu4-O40	97.9(2)
O14A-Cu2-O11	89.0(2)	O22A-Cu5-O7	169.8(2)
O14A-Cu2-O35	90.0(2)	O22A-Cu5-O25	88.3(2)
O11-Cu2-O35	165.8(2)	O7-Cu5-O25	89.8(2)
O14A-Cu2-O2	166.9(2)	O22A-Cu5-O28	90.9(2)
O11-Cu2-O2	89.5(2)	07-Cu5-O28	89.2(2)
035-Cu2-02	882(2)	O25-Cu5-O28	1696(2)
014A-Cu2-O38	95.5(3)	022A-Cu5-041	95 76(19)
011-Cu2-O38	96.0(2)	07-Cu5-O41	94 37(19)
O35-Cu2-O38	982(2)	025-Cu5-041	93 5(2)
O_2 -Cu2-O38	97.6(3)	028-Cu5-O41	96.9(2)
016-Cu3-019	167.9(2)	029-Cu6-026	166.0(2)
016-Cu3-031A	89 7(2)	029-Cu6-O8	90.3(2)
019-Cu3-031A	90.1(2)	026-Cu6-O8	894(2)
016-Cu3-04	892(2)	020 Cu = 000 000	89 1(2)
019-Cu3-04	88.5(2)	026-Cu6-023A	88.0(2)
0314-Cu3-04	168 1(2)	020 Cu0 02311 08-Cu6-023A	167.0(2)
016-Cu3-039	932(2)	0.00002571 0.029-C116-0.047	93 8(3)
019-C13-039	98.9(2)	025 Cu0-042 026-Cu6-042	100 1(3)
0314 0314 0303	967(2)	020 Cu0-042 08-Cu6-042	962(2)
0.00000000000000000000000000000000000	95.7(2)	0.0-0.42 0.034-0.042	96.2(2)
$\frac{0+-\cos(2)}{2}$	$\frac{1}{1}$	0237-010-042	70.0(2)

Table S2 Selected bond lengths [Å] and angles [°] for 1

Symmetry code: A) -y + 1, -x + 1, -z

Fig. S1 PXRD patterns of 1.

Fig. S2 TG curve of 1.

Fig. S3 ORTEP view of the structure of 1 showing the atom-labeling scheme and 30% thermal ellipsoids. Hydrogen atoms are omitted for clarity. Symmetry codes: A) -y + 1, -x + 1, -z.

Fig. S4 TG curve of complex 1a and 1b.

Fig. S5 A show of the size of the nanoball and its pore.

Fig. S6 Packing diagram of the nanocages of 1 in a ball-and-stick model, with a yellow dummy ball showing the solvent-accessible cavity in the nanocage.