An Efficient Synthesis of 2-Thio-5-amino Substituted

Benzoquinones via KI Catalyzed Cascade Oxidation/Michael

addition/Oxidation Starting from Hydroquinone

Yihuan Lu, Yuqiong Zhao, Shucheng Wang, Xin Wang, Zemei Ge*, Runtao Li* State Key Laboratory of National and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing 100191, P. R. of China

Content

1.	General information	2
2.	Synthesis of isothiouronium salts	2
3.	Synthesis of 2-(benzylthio)cyclohexa-2,5-diene-1,4-dione (7c)	4
4.	Preparation for 2-thio-5-amino substituted benzoquinones	4
5.	Spectra of compounds	13
References		48

1. General information

All experiments were carried out under air unless otherwise indicated. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker AVIII-400/600 spectrometer at ambient temperature with CDCl₃, D₂O or DMSO-d₆ as the solvent using tetramethylsilane (TMS) as internal standard unless otherwise noted. High-resolution mass spectra were recorded by Bruker Apex IV Fourier Transform Ion Cyclotron Resonance Mass Spectrometer spectrometer (HRMS). All melting points were measured on a melting point apparatus with uncorrected thermometers.

2. Synthesis of isothiouronium salts (3)

S-Methylisothiourea Hemisulfate Salt (3h) was purchased from accela.

General preparation for isothiouronium salts (3)

$$RX + \underbrace{H_2N \qquad NH_2} \qquad \underbrace{EtOH}_{reflux} \qquad R \underbrace{S}_{NH_2} \qquad HX$$

To the solution of thiourea (3.806 g, 50 mmol) in EtOH (50 mL) was added alkyl halide (55 mmol). The mixture was kept refluxing in oil bath. The completion of the reaction was monitored by TLC. The solvent was removed and the residue was recrystallized from EtOH/EtOAc.

S-Allylisothiouronium bromide (3a): Obtained in 92% yield (9.062 g), white solid; m.p. 79.4-79.8°C (Lit.3 74-76°C); ¹H NMR (400 MHz, D₂O) δ 5.94 (ddt, *J* = 16.8, 10.1, 6.5 Hz, 1H), 5.44 (dd, *J* = 17.0, 1.0 Hz, 1H), 5.32 (dd, *J* = 10.2, 0.9 Hz, 1H), 3.82 (m, 2H); ¹³C NMR (101 MHz, D₂O) δ 170.9, 130.6, 120.3, 33.8

$$\underset{H_2N}{\overset{NH}{\vdash}} \overset{\bullet HBr}{\frown}$$

S-Cyclopentylisothiouronium bromide (3b): Obtained in 92% yield (10.350 g), white solid; m.p. 140.4-141.2°C; ¹H NMR (400 MHz, D₂O) δ 4.01-3.69 (m, 1H), 2.29-2.08 (m, 2H), 1.66 (ddd, *J* = 15.7, 9.2, 5.1 Hz, 6H); ¹³C NMR (101 MHz, D₂O) δ 171.7, 43.9, 32.9, 24.3

S-Benzylisothiouronium chloride (3c): Obtained in 93% yield (9.393 g), white solid; m.p. 145.0-

145.5°C(Lit.4 146-148°C); ¹H NMR (400 MHz, D₂O) δ 7.50-7.14 (m, 5H), 4.28 (s, 2H); ¹³C NMR (101 MHz, D₂O) δ 170.5, 133.9, 129.2, 128.9, 128.5, 35.1

$$H_2N \overset{NH}{\vdash} S \overset{O}{\frown} O \overset{\bullet HBr}{\frown}$$

Ethyl 3-(carbamimidoylthio)propanoate hydrobromide (3e): Obtained in 86% yield (10.965 g), white solid; m.p. 85.6-86.2°C; ¹H NMR (400 MHz, D₂O) δ 4.13 (q, *J* = 7.1 Hz, 2H), 3.32 (t, *J* = 6.7 Hz, 2H), 2.80 (t, *J* = 6.7 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, D₂O) δ 173.4, 170.9, 62.3, 33.5, 26.0, 13.3

S-Cinnamylisothiouronium chloride (3f): Obtained in 81% yield (9.234 g), white solid, m.p. 166.7-167.6°C; ¹H NMR (400 MHz, D₂O) δ 7.54-7.16 (m, 5H), 6.67 (d, *J* = 15.8 Hz, 1H), 6.37-6.09 (m, 1H), 3.85 (d, *J* = 7.1 Hz, 2H); ¹³C NMR (101 MHz, D₂O) δ 170.7, 135.9, 134.6, 129.0, 128.5, 126.6, 121.9, 33.5.

S-Methallylisothiouronium bromide (3g): Obtained in 93% yield (9.811 g), white solid; m.p. 126.1-126.4°C; ¹H NMR (400 MHz, D₂O) δ 5.06 (s, 1H), 5.01 (s, 1H), 3.74 (s, 2H), 1.79 (s, 3H); ¹³C NMR (101 MHz, D₂O) δ 139.0, 115.6, 38.0, 20.0

4-Isothioureidobutyronitrile hydrochloride (3d)

Redistilled 4-chlorobutyronitrile (7.663 g, 74 mmol) was added to a solution of thiourea (7.612 g, 100 mmol) in water (5.0 mL), and the mixture was refluxed for 3 h. Acetone (100 mL) was added to the solution, the mixture was filtered, and the cake was washed with acetone and diethyl ether and air-dried overnight.¹ Obtained **3d** in 83% yield (10.994 g), white solid; m.p. 130.1-130.9°C (Lit.2 125-127°C); ¹H NMR (400 MHz, D₂O) δ 3.20 (t, *J* = 7.2 Hz, 2H), 2.61 (t, *J* = 7.1 Hz, 2H), 2.11-1.94 (m, 2H); ¹³C NMR (101 MHz, D₂O) δ 170.6, 120.6, 29.5, 24.0, 15.4

3. Synthesis of 2-(benzylthio)cyclohexa-2,5-diene-1,4-dione (7c)

To a suspension of finely divided 1,4-benzoquinone (0.108 g, 1 mmol) in methanol (5 mL) was added a solution of benzyl mercaptan (0.124 g, 1 mmol) in methanol (1 mL). The mixture was stirred for 5 min and water (10 mL) was added, the solid was filtered off, which was then purified by silica gel column (EtOAc/petroleum ether) to give the orange solid in 68% yield (0.156 g).⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.29 (m, 5H), 6.82 (d, *J* = 10.1 Hz, 1H), 6.73 (dd, *J* = 10.1, 2.3 Hz, 1H), 6.48 (d, *J* = 2.2 Hz, 1H), 4.03 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.0, 183.8, 152.4, 137.5, 136.1, 133.8, 129.0, 128.9, 128.1, 125.4, 35.3.

4. Preparation for 2-thio-5-amino substituted benzoquinones (4)

2-(Allylthio)-5-(cyclohexylamino)-2,5-cyclohexadiene-1,4-dione (4aa). Typical Procedure:

To the solution of hydroquinone (0.110 g, 1 mmol), *S*-Allylisothiouronium bromide (0.197 g, 1 mmol), potassium iodide (0.050 g, 0.3 mmol) in CH₃CN/NaCl (aq., saturated, 20 mL/5 mL) was added cyclohexylamine (0.297 g, 3 mmol). The mixture was stirred at room temperature for 12h until the consumption of hydroquinone on TLC indicated by iodine vapor, then diluted with saturated brine (20 mL), and extracted with EtOAc (3×20 mL). The combined organic layers were dried with anhydrous Na₂SO₄. The solvent was removed and the residue was purified by silica gel column (EtOAc/petroleum ether) to give the desired product **4aa** in 73% yield (0.202 g). red solid, m.p. 92.5-93.4°C; ¹H NMR (400 MHz, CDCl₃) δ 6.23 (s, 1H), 5.87 (ddt, *J* = 16.6, 10.1, 6.4 Hz, 2H), 5.51 (s, 1H), 5.39 (dd, *J* = 17.0, 1.1 Hz, 1H), 5.28 (dd, *J* = 10.1, 1.0 Hz, 1H), 3.45 (d, *J* = 6.4 Hz, 2H), 3.33-3.16 (m, 1H), 2.08-1.88 (m, 2H), 1.90-1.72 (m, 2H), 1.66 (d, *J* = 5.8 Hz, 1H), 1.31 (ddd, *J* = 24.4, 14.5, 2.9 Hz, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 179.4, 158.7, 146.2, 130.4, 120.3, 119.8, 96.8, 51.3, 33.4, 31.8, 25.4, 24.5; HRMS (ESI): *m/z* calcd for C₁₅H₂₀NO₂S [M+H]⁺: 278.12093, found: 278.12107.

2-(Allylthio)-5-(butylamino)-2,5-cyclohexadiene-1,4-dione (4ab): Obtained in 71% yield (0.178 g), red solid, m.p. 83.5-84.2°C; ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 6.12-5.73 (m, 2H), 5.49 (s, 1H), 5.40 (dd, *J* = 17.0, 1.0 Hz, 1H), 5.29 (dd, *J* = 10.1, 1.0 Hz, 1H), 3.46 (d, *J* = 6.5 Hz, 2H), 3.13 (dd, *J* = 13.2, 6.9 Hz, 2H), 1.70-1.60 (m, 2H), 1.49-1.36 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 179.3, 158.7, 147.5, 130.4, 120.3, 119.8, 96.8, 42.3, 33.4, 30.2, 20.1, 13.6; HRMS (ESI): *m/z* calcd for C₁₃H₁₈NO₂S [M+H]⁺: 252.10528, found: 252.10575.

2-(Allylthio)-5-(tert-butylamino)-2,5-cyclohexadiene-1,4-dione (4ac): Obtained in 50% yield (0.125 g), red solid, m.p. 113.9-114.6°C; ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 5.96 (br, 1H), 5.91-5.80 (m, 1H), 5.71 (s, 1H), 5.39 (dd, J = 17.0, 1.0 Hz, 1H), 5.28 (dd, J = 10.1, 1.0 Hz, 1H), 3.45 (d, J = 6.4 Hz, 2H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 180.8, 179.7, 158.2, 145.2, 130.36, 120.4, 119.8, 98.8, 51.9, 33.3, 28.3; HRMS (ESI): *m/z* calcd for C₁₃H₁₈NO₂S [M+H]⁺:252.10528, found: 252.10574.

2-(Allylthio)-5-((2-hydroxypropyl)amino)-2,5-cyclohexadiene-1,4-dione (4ad): Obtained in 72% yield (0.182 g), red solid, m.p. 100.6-101.4°C; ¹H NMR (400 MHz, CDCl₃) δ 6.28 (s, 1H), 6.23 (s, 1H), 5.86 (ddt, J = 16.7, 10.1, 6.5 Hz, 1H), 5.50 (s, 1H), 5.39 (d, J = 17.0 Hz, 1H), 5.28 (d, J = 10.1 Hz, 1H), 4.10 (s, 1H), 3.45 (d, J = 6.4 Hz, 2H), 3.20 (ddd, J = 13.7, 6.3, 3.7 Hz, 1H), 3.08 (ddd, J = 13.6, 7.8, 5.5 Hz, 1H), 2.23 (d, J = 37.2 Hz, 1H), 1.30 (d, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 179.1, 158.5, 147.7, 130.3, 120.4, 119.9, 97.2, 65.6, 49.4, 33.4, 21.3; HRMS (ESI): m/z calcd for C₁₂H₁₆NO₃S [M+H]⁺: 254.08454, found: 254.08478.

Methyl 3-((4-(allylthio)-3,6-dioxocyclohexa-1,4-dien-1-yl)amino)propanoate (4ae): Obtained

in 61% yield (0.171 g), red solid, m.p. 94.0-94.9°C; ¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 6.17 (s, 1H), 5.87 (ddt, J = 16.7, 10.1, 6.5 Hz, 1H), 5.52 (s, 1H), 5.39 (dd, J = 17.0, 0.9 Hz, 1H), 5.29 (d, J = 10.1 Hz, 1H), 3.74 (s, 3H), 3.46 (q, J = 6.3 Hz, 4H), 2.66 (t, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 179.0, 171.5, 158.3, 147.1, 130.3, 120.5, 119.9, 97.2, 52.1, 37.9, 33.4, 32.4; HRMS (ESI): *m/z* calcd for C₁₃H₁₆NO₄S [M+H]⁺: 282.07946, found: 282.07982.

2-(Allylthio)-5-((3-(methylthio)propyl)amino)-2,5-cyclohexadiene-1,4-dione (4af): Obtained in 62% yield (0.175 g), red solid, m.p. 66.7-67.5°C; ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 6.00 (s, 1H), 5.87 (ddt, J = 16.7, 10.1, 6.5 Hz, 1H), 5.53 (s, 1H), 5.39 (dd, J = 17.0, 1.0 Hz, 1H), 5.29 (dd, J = 10.1, 0.9 Hz, 1H), 3.46 (d, J = 6.5 Hz, 2H), 3.29 (q, J = 6.6 Hz, 2H), 2.58 (t, J = 6.9 Hz, 2H), 2.12 (s, 3H), 1.95 (p, J = 6.9 Hz, 2H); 13C NMR (101 MHz, CDCl₃) δ 181.1, 179.2, 158.6, 147.4, 130.3, 120.4, 119.9, 97.1, 41.3, 33.4, 31.5, 27.1, 15. 6; HRMS (ESI): *m/z* calcd for C₁₃H₁₈NO₂S₂ [M+H]⁺: 284.07735, found: 284.07760.

2-(Allylamino)-5-(allylthio)-2,5-cyclohexadiene-1,4-dione (4ag): Obtained in 60% yield (0.141 g), red solid, m.p. 108.5-109.4°C; ¹H NMR (400 MHz, CDCl₃) δ 6.26 (s, 1H), 5.99 (s, 1H), 5.94-5.78 (m, 2H), 5.51 (s, 1H), 5.40 (d, *J* = 17.0 Hz, 1H), 5.34-5.24 (m, 3H), 3.79 (t, *J* = 5.7 Hz, 2H), 3.46 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 179.2, 158.4, 147.2, 131.3, 130. 3, 120.4, 119.9, 118.4, 97.7, 44.9, 33.4; HRMS (ESI): *m/z* calcd for C₁₂H₁₄NO₂S [M+H]⁺: 236.07398, found: 236.07443.

2-(Allylthio)-5-(phenylamino)-2,5-cyclohexadiene-1,4-dione (4ah): Obtained in 40% yield (0.108 g), red solid, m.p. 266.4-267.3°C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.42 (dd, J = 8.5, 7.3 Hz, 2H), 7.23 (t, J = 7.8 Hz, 3H), 6.36 (s, 1H), 6.19 (s, 1H), 5.89 (ddt, J = 16.7, 10.1, 6.4 Hz, 1H), 5.42 (dd, J = 17.0, 1.0 Hz, 1H), 5.32 (dd, J = 10.1, 0.9 Hz, 1H), 3.50 (d, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 182.4, 179.4, 157.9, 143.9, 137.2, 130.2, 129.7, 125.8, 122.4, 120.6, 112.0, 99.9, 33.4; HRMS (ESI): *m/z* calcd for C₁₅H₁₄NO₂S [M+H]⁺: 272.07398, found: 272.07423.

2-(Allylthio)-5-((2-phenylally))amino)-2,5-cyclohexadiene-1,4-dione (4ai): Obtained in 69% yield (0.214 g), red solid, m.p. 129.7-130.5°C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.30 (m, 5H), 6.24 (s, 1H), 6.03 (s, 1H), 5.94-5.79 (m, 1H), 5.59 (s, 1H), 5.56 (s, 1H), 5.39 (dd, *J* = 17.0, 1.0 Hz, 1H), 5.31-5.28 (m, 1H), 5.28 (s, 1H), 4.18 (d, *J* = 5.9 Hz, 2H), 3.46 (d, *J* = 6.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 179.1, 158.3, 147.2, 141.8, 138.0, 130.3, 128.7, 128.4, 126.0, 120.5, 119.9, 115.1, 97.9, 46.5, 33.4; HRMS (ESI): *m/z* calcd for C₁₈H₁₈NO₂S [M+H]⁺: 312.10528, found: 312.10531.

2-(Allylthio)-5-((pyridin-3-ylmethyl)amino)-2,5-cyclohexadiene-1,4-dione (4aj): Obtained in 73% yield (0.208 g), red solid, m.p. 117.2-118.0°C; ¹H NMR (400 MHz, CDCl₃) δ 8.71-8.56 (m, 2H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.33 (dd, *J* = 7.8, 4.9 Hz, 1H), 6.28 (s, 1H), 6.18 (s, 1H), 5.87 (ddt, *J* = 16.7, 10.1, 6.4 Hz, 1H), 5.54 (s, 1H), 5.40 (d, *J* = 17.0 Hz, 1H), 5.30 (d, *J* = 10.1 Hz, 1H), 4.37 (d, *J* = 5.9 Hz, 2H), 3.47 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 179.0, 158.2, 149.7, 149.1, 147.0, 135.2, 131.3, 130.2, 123.8, 120.6, 112.0, 98.4, 44.2, 33.4; HRMS (ESI): *m/z* calcd for C₁₅H₁₅N₂O₂S [M+H]⁺: 287.08487, found: 287.08508.

2-(Allylthio)-5-((furan-2-ylmethyl)amino)-2,5-cyclohexadiene-1,4-dione (4ak): Obtained in 61% yield (0.166 g), red solid, m.p. 124.4-124.8°C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 6.37 (d, J = 2.6 Hz, 1H), 6.32 (d, J = 3.1 Hz, 1H), 6.26 (s, 1H), 6.12 (s, 1H), 5.87 (ddt, J = 16.5, 9.9, 6.4 Hz, 1H), 5.63 (s, 1H), 5.40 (d, J = 17.0 Hz, 1H), 5.29 (d, J = 10.1 Hz, 1H), 4.31 (d, J = 5.8 Hz, 2H), 3.46 (d, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 179.1, 158.2, 148.7, 146.9, 142.9, 130.3, 120.5, 119.9, 110.6, 108.8, 97.9, 39.6, 33.4; HRMS (ESI): *m/z* calcd for C₁₄H₁₄NO₃S [M+H]⁺: 276.06889, found: 276.06957.

2-(Allylthio)-5-(benzylamino)-2,5-cyclohexadiene-1,4-dione (4al): Obtained in 69% yield (0.196 g), red solid, m.p. 109.0-109.9°C; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.30 (m, 5H), 6.26 (s, 1H), 6.19 (s, 1H), 5.87 (ddt, J = 16.7, 10.1, 6.4 Hz, 1H), 5.55 (s, 1H), 5.40 (dd, J = 17.0, 1.0 Hz, 1H), 5.29 (dd, J = 10.1, 0.8 Hz, 1H), 4.32 (d, J = 5.8 Hz, 2H), 3.46 (d, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 179.2, 158.4, 147.2, 135.6, 130.3, 129.0, 128. 2, 127.7, 120.5, 119.9, 97.9, 46.8, 33.4; HRMS (ESI): *m/z* calcd for C₁₆H₁₆NO₂S [M+H]⁺: 286.08963, found: 286.08984.

2-(Allylthio)-5-((3-methoxypropyl)amino)-2,5-cyclohexadiene-1,4-dione (4am): Obtained in 65% yield (0.173 g), red solid, m.p. 77.3-77.6°C; ¹H NMR (400 MHz, CDCl₃) δ 6.38 (br, 1H), 6.23 (s, 1H), 5.87 (ddt, J = 16.7, 10.2, 6.5 Hz, 1H), 5.49 (s, 1H), 5.39 (d, J = 17.0 Hz, 1H), 5.28 (d, J = 10.1 Hz, 1H), 3.50 (t, J = 5.6 Hz, 2H), 3.46 (d, J = 6.4 Hz, 2H), 3.38 (s, 3H), 3.25 (dd, J = 12.4, 6.3 Hz, 2H), 1.97-1.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 179.2, 158.6, 147.7, 130.4, 120.4, 119.8, 96.63, 70.7, 58.9, 40.8, 33.4 28.0; HRMS (ESI): *m/z* calcd for C₁₃H₁₈NO₃S [M+H]⁺: 268.10019, found: 268.10042.

2-(Allylthio)-5-((2-chloroethyl)amino)-2,5-cyclohexadiene-1,4-dione (4an): Obtained in 48% yield (0.123 g), red solid, m.p. 102.9-103.4°C; ¹H NMR (400 MHz, CDCl₃) δ 6.27 (s, 1H), 6.13 (br, 1H), 5.87 (ddt, J = 16.7, 10.1, 6.4 Hz, 1H), 5.53 (s, 1H), 5.40 (d, J = 17.0 Hz, 1H), 5.29 (d, J = 10.1 Hz, 1H), 3.72 (t, J = 5.8 Hz, 2H), 3.52 (dd, J = 11.8, 5.9 Hz, 2H), 3.47 (d, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 178.8, 158.1, 147.0, 130.2, 120.6, 120.0, 97.8, 43.9, 41.3, 33.4; HRMS (ESI): m/z calcd for C₁₁H₁₃ClNO₂S [M+H]⁺: 258.03500, found: 258.03482.

2-(Allylthio)-5-morpholino-2,5-cyclohexadiene-1,4-dione (4ao): Obtained in 82% yield (0.217 g), red solid, m.p. 120.3-121.1°C; ¹H NMR (400 MHz, CDCl₃) δ 6.21 (s, 1H), 5.87 (ddt, J = 16.7, 10.1, 6.4 Hz, 1H), 5.77 (s, 1H), 5.39 (d, J = 16.9 Hz, 1H), 5.29 (d, J = 10.1 Hz, 1H), 3.86-3.81 (m, 4H), 3.53-3.49 (m, 4H), 3.46 (d, J = 6.4 Hz, 2H); 13C NMR (101 MHz, CDCl₃) δ 182.2, 181.0, 153.9, 152.1, 130.4, 123.7, 119.8, 107.6, 66.4, 49.0, 33.2; HRMS (ESI): *m/z* calcd for C₁₃H₁₆NO₃S [M+H]⁺: 266.08454, found: 266.08469.

2-(Allylthio)-5-thiomorpholino-2,5-cyclohexadiene-1,4-dione (4ap): Obtained in 79% yield (0.222 g), red solid, m.p. 105.9-106.9°C; ¹H NMR (400 MHz, CDCl₃) δ 6.19 (s, 1H), 5.86 (ddt, *J* = 16.7, 10.1, 6.5 Hz, 1H), 5.77 (s, 1H), 5.38 (d, *J* = 17.0 Hz, 1H), 5.28 (d, *J* = 10.1 Hz, 1H), 3.84 (dd, *J* = 6.3, 3.8 Hz, 4H), 3.45 (d, *J* = 6.4 Hz, 2H), 2.81-2.70 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 181.9, 181.1, 154.1, 151.7, 130.4, 123.5, 119.8, 107.21, 51.8, 33.2, 27.1; HRMS (ESI): *m/z* calcd for C₁₃H₁₆NO₂S₂ [M+H]⁺: 282.06170, found: 282.06208.

2-(Allylthio)-5-(4-methylpiperazin-1-yl)-2,5-cyclohexadiene-1,4-dione (4aq): Obtained in 79% yield (0.219 g), red solid, m.p. 172.4-173.3°C; ¹H NMR (400 MHz, CDCl₃) δ 6.18 (s, 1H), 5.87 (ddt, J = 16.8, 10.1, 6.5 Hz, 1H), 5.77 (s, 1H), 5.38 (d, J = 17.0 Hz, 1H), 5.28 (d, J = 10.1 Hz, 1H), 3.58-3.50 (m, 4H), 3.45 (d, J = 6.4 Hz, 2H), 2.59-2.50 (m, 4H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.0, 181.2, 154.0, 152.3, 130.5, 123.6, 119.7, 107.3, 54.6, 48.8, 45.9, 33.2; HRMS (ESI): m/z calcd for C₁₄H₁₉N₂O₂S [M+H]⁺: 279.11617, found: 279.11656.

2-(Allylthio)-5-(4-hydroxypiperidin-1-yl)-2,5-cyclohexadiene-1,4-dione (4ar): Obtained in 75% yield (0.209 g), red solid, m.p. 84.4-85.2°C; ¹H NMR (400 MHz, CDCl₃) δ 6.19 (s, 1H), 5.93-5.83 (m, 1H), 5.80 (s, 1H), 5.39 (d, J = 16.9 Hz, 1H), 5.28 (d, J = 10.1 Hz, 1H), 4.13-3.92 (m, 1H), 3.92-3.75 (m, 2H), 3.43 (d, J = 14.9 Hz, 2H), 3.32 (ddd, J = 35.5, 19.4, 15.1 Hz, 2H), 2.07-1.94 (m, 2H), 1.72-1.65 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.9, 181.2, 154.2, 152.3, 130.5, 123.5, 119.7, 106.6, 66.5, 46.3, 33.9, 33.2; HRMS (ESI): *m/z* calcd for C₁₄H₁₈NO₃S [M+H]⁺: 280.10019, found: 280.10053.

2-(Allylthio)-5-(dimethylamino)-2,5-cyclohexadiene-1,4-dione (4as): Obtained in 49% yield (0.109 g), red solid, m.p. 112.9-113.8°C; ¹H NMR (400 MHz, CDCl₃) δ 6.14 (s, 1H), 5.86 (ddt, *J*

= 16.7, 10.2, 6.5 Hz, 1H), 5.59 (s, 1H), 5.38 (dd, J = 17.0, 1.0 Hz, 1H), 5.26 (d, J = 10.1 Hz, 1H), 3.44 (d, J = 6.4 Hz, 2H), 3.18 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 180.9, 155.1, 151.0, 130.6, 122.64, 119.6, 102.8, 42.7, 33.2; HRMS (ESI): m/z calcd for C₁₁H₁₄NO₂S [M+H]⁺: 224.07398, found: 224.07432.

2-((3-Methoxypropyl)amino)-5-(methylthio)-2,5-cyclohexadiene-1,4-dione (4mh): Obtained in 62% yield (0.149 g), red solid, m.p. 77.9-78.8°C; ¹H NMR (400 MHz, CDCl₃) δ 6.38 (d, *J* = 6.7 Hz, 1H), 6.16 (s, 1H), 5.50 (s, 1H), 3.51 (t, *J* = 5.6 Hz, 2H), 3.38 (s, 3H), 3.26 (dd, *J* = 12.5, 6.2 Hz, 2H), 2.31 (s, 3H), 2.00-1.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 180.9, 179.1, 160.6, 147.9, 119.6, 96.5, 70.7, 58.9, 40.8, 28.0, 13.9; HRMS (ESI): *m/z* calcd for C₁₁H₁₆NO₃S [M+H]⁺: 242.08454, found: 242.08504.

2-(Cyclopentylthio)-5-((3-methoxypropyl)amino)-2,5-cyclohexadiene-1,4-dione (4mb): Obtained in 68% yield (0.201 g), red solid, m.p. 82.8-83.7°C; ¹H NMR (400 MHz, CDCl₃) δ 6.36 (br, 1H), 6.26 (s, 1H), 5.46 (s, 1H), 3.49 (t, J = 5.6 Hz, 2H), 3.43-3.37 (m, 1H), 3.36 (s, 3H), 3.23 (dd, J = 12.5, 6.3 Hz, 2H), 2.22-2.10 (m, 2H), 1.95-1.86 (m, 2H), 1.83-1.71 (m, 4H), 1.66 (dd, J = 8.5, 6.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.3, 179.2, 160.0, 147.8, 120.5, 96.6, 70.7, 58.8, 42.6, 40.7, 32.8, 28.0, 25.1; HRMS (ESI): *m/z* calcd for C₁₅H₂₂NO₃S [M+H]⁺: 296.13149, found: 296.13188.

2-(Benzylthio)-5-((3-methoxypropyl)amino)-2,5-cyclohexadiene-1,4-dione (4mc): Obtained in 68% yield (0.216 g), red solid, m.p. 141.3-142.0°C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (ddd, J = 20.3, 13.0, 7.2 Hz, 5H), 6.37 (br, 1H), 6.27 (s, 1H), 5.49 (s, 1H), 4.00 (s, 2H), 3.50 (t, J = 5.6 Hz, 2H), 3.38 (s, 3H), 3.25 (q, J = 6.3 Hz, 2H), 2.02-1.85 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 179.2, 158.9, 147.7, 134.2, 128.9, 128.9, 127.9, 120.3, 96. 6, 70.7, 58.9, 40.8, 35.6, 28.0; HRMS (ESI): m/z calcd for C₁₇H₂₀NO₃S [M+H]⁺: 318.11584, found: 318.11637.

4-((4-((3-Methoxypropyl)amino)-3,6-dioxocyclohexa-1,4-dien-1-yl)thio)butanenitrile (4md): Obtained in 71% yield (0.209 g), red solid, m.p. 111.5-112.2°C; ¹H NMR (400 MHz, CDCl₃) δ 6.43 (br, 1H), 6.21 (s, 1H), 5.50 (s, 1H), 3.51 (t, *J* = 5.6 Hz, 2H), 3.38 (s, 3H), 3.26 (dd, *J* = 12.4, 6.2 Hz, 2H), 2.91 (t, *J* = 7.1 Hz, 2H), 2.58 (t, *J* = 7.0 Hz, 2H), 2.12 (p, *J* = 7.0 Hz, 2H), 1.97-1.88 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 180.6, 179.1, 158.0, 147.7, 120.2, 118.3, 96.6, 70.7, 58.9, 40.9, 28.7, 28.0, 23.4, 16.5; HRMS (ESI): *m/z* calcd for C₁₄H₁₉N₂O₃S [M+H]⁺: 295.11109, found: 295.11135.

Ethyl 3-((4-((3-methoxypropyl)amino)-3,6-dioxocyclohexa-1,4-dien-1-yl)thio)propanoate (4me): Obtained in 70% yield (0.229 g), red solid, m.p. 108.0-108.2°C; ¹H NMR (400 MHz, CDCl₃) δ 6.40 (br, 1H), 6.23 (s, 1H), 5.49 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.50 (t, *J* = 5.6 Hz, 2H), 3.37 (s, 3H), 3.25 (dd, *J* = 12.4, 6.2 Hz, 2H), 3.04 (t, *J* = 7.4 Hz, 2H), 2.72 (t, *J* = 7.4 Hz, 2H), 1.97-1.87 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.8, 179.2, 170.9, 158.6, 147.7, 119.9, 96.6, 70.7, 61.2, 58.9, 40.8, 32.2, 28.0, 25.3, 14.2; HRMS (ESI): *m/z* calcd for C₁₅H₂₂NO₅S [M+H]⁺: 328.12132, found: 328.12148.

2-(Cinnamylthio)-5-((3-methoxypropyl)amino)-2,5-cyclohexadiene-1,4-dione (4mf): Obtained in 63% yield (0.216 g), red solid, m.p. 102.0-102.7°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.27 (m, 5H), 6.70 (d, *J* = 15.8 Hz, 1H), 6.39 (br, 1H), 6.30 (s, 1H), 6.22 (dt, *J* = 15.7, 6.9 Hz, 1H), 5.50 (s, 1H), 3.66-3.59 (m, 2H), 3.50 (t, *J* = 5.6 Hz, 2H), 3.37 (s, 3H), 3.25 (dd, *J* = 12.4, 6.2 Hz, 2H), 1.96-1.85 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 179.2, 158.7, 147.7, 136.1, 134.7, 128.6, 128.1, 126.5, 121.5, 120.4, 96.6, 70.7, 58.9, 40.8, 33.1, 28.0; HRMS (ESI): *m/z* calcd for C₁₉H₂₂NO₃S [M+H]⁺: 344.13149, found: 344.13150.

2-((3-Methoxypropyl)amino)-5-((2-methylallyl)thio)-2,5-cyclohexadiene-1,4-dione (4mg): Obtained in 65% yield (0.182 g), red solid, m.p. 103.5-104.4°C; ¹H NMR (400 MHz, CDCl₃) δ 6.37 (br, 1H), 6.22 (s, 1H), 5.48 (s, 1H), 5.09 (s, 1H), 5.02 (s, 1H), 3.50 (t, J = 5.6 Hz, 2H), 3.42 (s, 2H), 3.37 (s, 3H), 3.24 (dd, J = 12.4, 6.2 Hz, 2H), 1.92 (dd, J = 12.1, 6.0 Hz, 2H), 1.88 (d, J = 5.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 179.2, 159.1, 147.7, 138.0, 120.5, 115.5, 96.6, 70.7, 58.9, 40.80, 37.9, 28.0, 21.8; HRMS (ESI): *m/z* calcd for C₁₄H₂₀NO₃S [M+H]⁺: 282.11584, found: 282.11581.

5. Spectra of compounds

1 H NMR (400 MHz, D₂O) of **3a**

¹H NMR (400 MHz, D_2O) of **3b**

14

230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0

1 H NMR (400 MHz, D₂O) of **3d**

¹H NMR (400 MHz, D_2O) of **3e**

^{230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0}

^{50 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0}

1 H NMR (400 MHz, D₂O) of **3**g

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR (400 MHz, CDCl₃) of 7c

¹H NMR (400 MHz, CDCl₃) of 4aa

DEPT 135 of 4aa

180 170 160

HMBC of 4aa

¹H NMR (400 MHz, CDCl₃) of 4af

27

¹H NMR (400 MHz, CDCl₃) of 4ag

¹H NMR (400 MHz, CDCl₃) of 4ai

¹H NMR (400 MHz, CDCl₃) of 4ak

¹H NMR (400 MHz, CDCl₃) of 4al

¹H NMR (400 MHz, CDCl₃) of 4am

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR (400 MHz, CDCl₃) of 4aq

230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0

¹H NMR (400 MHz, CDCl₃) of 4ar

¹H NMR (400 MHz, CDCl₃) of **4mb**

50 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0

¹H NMR (400 MHz, CDCl₃) of 4mc

¹H NMR (400 MHz, CDCl₃) of 4me

¹H NMR (400 MHz, CDCl₃) of 4mg

^{190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

¹H NMR (400 MHz, CDCl₃) of **4mh**

References

- 1 R. R. Traut, A. Bollen, T. T. Sun, J. W. B. Hershey, J. Sundberg and R. Pierce, *Biochemistry*, 1973, 12, 3266-3273.
- 2 E. Miller, J. M. Sprague, L. W. Kissinger, L. F. McBurney, J. Am. Chem. Soc., 1940, 62, 2099-2013.
- 3 Levanova, Grabel'nykh, Vakhrina, Russavskaya, Albanov, Korchevin, Rozentsveig, *Russ. J. Org. Chem.*, 2014, 50, 429 433.
- 4 J. J. Donleavy, J. Am. Chem. Soc., 1936, 58, 1004-1005.
- 5 Margaret A. Brimble, Mark T. Brimble and Jennifer J. Gibson, *J. Chem. Soc. Perkin Trans. I*, 1989, **1**, 179-184.