Electronic Supplementary Information

Non-enzymatic electrochemical sensing of glucose and hydrogen peroxide using bis(acetylacetonato)oxovanadium(IV) complex modified gold electrode

Koushik Barman and Sk Jasimuddin*

Department of Chemistry, Assam University, Silchar, Assam -788011, India

Figure S1. Overlaid cyclic voltammogram obtained with (red curve) and without (blue curve) 0.1 mM glucose at the $[VO(acac)_2]$ -PATP-Au electrode in 0.1 M PBS solution (pH = 7.0).

Figure S2. Overlaid DPV obtained with bare (brown curve), PATP (green curve) and $[VO(acac)_2]$ -PATP (black curve) modified gold electrode in 0.1 mM glucose in 0.1 M PBS solution (pH = 7.0).

Figure S3. Overlaid cyclic voltammogram obtained with (red curve) and without (blue curve) 0.5 mM H_2O_2 at the [VO(acac)₂]-PATP-Au electrode in 0.1 M PBS solution (pH = 7.0).

Figure S4. Overlaid Nyquist plot of 0.1 mM glucose in 0.1 M phosphate buffer solution (pH = 7.0) using bare and modified gold electrodes. $E_{ac} = 10$ mV, frequency range: 0.01-100000 Hz. [bare Au (blue curve), $R_{CT} = 4.0 \times 10^4 \Omega$; PATP - Au (red curve), $R_{CT} = 4.8 \times 10^4 \Omega$; [VO(acac)₂]-PATP-Au (green curve, $R_{CT} = 1.3 \times 10^4 \Omega$].

Figure S5. Overlaid Nyquist plot of 0.5 mM H_2O_2 in 0.1 M phosphate buffer solution (pH = 7.0) using bare and modified gold electrodes. E_{ac} = 10 mV, frequency range: 0.01-100000 Hz. [bare Au (blue curve), R_{CT} = 2.6 × 10⁵ Ω ; PATP-Au (red curve), R_{CT} = 6.4 × 10⁵ Ω ; [VO(acac)₂]-PATP-Au (green curve), R_{CT} = 1.2 × 10⁵ Ω]

Figure S6. Chronoamperograms with increasing concentration of glucose (0.1 to 0.5 mM) in 0.1 M PBS (pH 7.0) at [VO(aca)2]-4-PATP-Au electrode at + 0.65 V vs Ag/AgCl. LOD= 0.1 μ M.

Figure S7. Chronoamperograms with increasing concentration of H_2O_2 (0.5 to 0.9 mM) in 0.1 M PBS (pH 7.0) at $[VO(acac)_2]$ -4-PATP-Au electrode at - 0.11 V versus Ag/AgCl. LOD = 0.03 μ M.

(a)

Figure S8. (a) Chronoamperograms with increasing concentration of glucose (1.0 μ M to 5.0 μ M) in 0.1 M PBS (pH 7.0) at [VO(acac)₂]-4-PATP-Au electrode at + 0.65 V *versus* Ag/AgCl. **(b)** Plot of concentration of glucose *versus* oxidation peak current. Detection limit 0.1 μ M (S/N = 3).

(b)

Figure S9. (a) Chronoamperograms with increasing concentration of H_2O_2 (20 to 40 μ M) in 0.1 M PBS (pH 7.0) at [VO(acac)₂]-4-PATP-Au electrode at - 0.11 V *versus* Ag/AgCl. **(b)** Plot of concentration of H_2O_2 *versus* reduction peak current. Detection limit 0.03 μ M (S/N = 3).

Detection limit of glucose and H_2O_2 were obtained by using $3\sigma/m$ where σ is the standard deviation of peak current in blank solution (n = 25) and m is the slope of the calibration curve.

The S/N value was calculated by dividing the mean value of the currents by the standard deviation of the currents at low concentration of analyte in chronoamperometry.

Figure S10. (a) Overlaid Differential pulse voltammogram with increasing glucose concentration (1-14 mM) in 0.1 M PBS (pH = 7.0) at $[VO(acac)_2]$ -PATP-Au electrode **(b)** Plot of current as a function of concentration of glucose with linear trend line (R² > 0.99)

Figure S11. (a) Overlaid Cyclic voltammograms with increasing hydrogen peroxide concentration in 0.1 M PBS (pH = 7.0) at $[VO(acac)_2]$ -PATP-Au electrode **(b)** Plot of current as a function of concentration of hydrogen peroxide with linear trend line ($R^2 > 0.99$)

Figure S12. (a) Cyclic voltammograms of 0.1 mM glucose in 0.1 M PBS (pH 7.0) at different scan rate using [VO(acac)₂]-PATP-Au electrode (b) Plot of oxidation peak current *versus* square root of scan rate.

Figure S13. (a) Cyclic voltammograms of 0.5 mM H_2O_2 in 0.1 M PBS (pH 7.0) at different scan rate using [VO(acac)₂]-PATP-Au electrode (b) Plot of oxidation peak current of 0.5 mM H_2O_2 versus square root of scan rate.

Figure S14. Plot of scan rate –normalized current ($I_p/\nu^{1/2}$) with scan rate ($\nu)$

Figure S15. Plot of accumulation time *versus* oxidation peak current of glucose and reduction peak current of H_2O_2 in 0.1 M PBS at pH 7 at [VO(acac)₂]-PATP-Au electrode.

Figure 16. (a) Plot of applied potential *versus* oxidation peak current of 0.1 mM glucose in 0.1 M PBS (pH 7) at VO(acac)₂-PATP-Au electrode. **(b)**Plot of applied potential *versus* reduction peak current of 0.5 mM H_2O_2 in 0.1 M PBS (pH 7) at VO(acac)₂-PATP-Au electrode.

Figure S17. (a) Overlaid DPV of 0.1 mM glucose at different pH using [VO(acac)₂]-PATP-Au electrode **(b)** Plot of oxidation peak potential of 0.1 mM glucose *versus* pH.

Figure S18. (a) Overlaid CV of 0.5 mM H_2O_2 at different pH obtained with $[VO(acac)_2]$ -PATP-Au electrode in 0.1 M PBS. (b) Plot of reduction peak current of 0.5 mM H_2O_2 versus pH.

Figure S19. (a) Plot of oxidation peak current of 0.1 mM glucose *versus* pH at $[VO(acac)_2]$ -PATP-Au electrode in 0.1 M PBS. **(b)** Plot of reduction peak potential of 0.5 mM H₂O₂ *versus* pH at $[VO(acac)_2]$ -PATP-Au electrode in 0.1 M PBS.

Figure S20. Plot of electrocatalytic current obtained for glucose and hydrogen peroxide with time using [VO(acac)₂]-PATP-Au electrode.

Figure S21. Overlaid DPVs of human blood sample solution and after addition of standard glucose solution in blood sample solution.

Table S1. Comparative account of different non-enzymatic electrochemical sensors for the determination of glucose and hydrogen peroxide

Sensor Glucose Hydrogen peroxide	
----------------------------------	--

	Linear range (mM)	Detection limit (µM)	Applied voltage (V, versus Ag/AgCl)	Medium	Linear range (mM)	Detection limit (µM)	Applied voltage (V, versus Ag/AgCl)	Medium	Reference
Cu@M-Chit- CNT/GCE	0.0005- 1 .0	0.05	+ 0.5	0.05 M NaOH	0.0001- 1.0	0.025	- 0.25	PBS (pH 7.0)	1
Cu ₂ O/GNs/GCE	0.3 – 3 3	3.3	+ 0.60	0.1 M кон	0.3-7.8	20.8	-0.4	0.1 M PBS (pH 7 4)	2
CQDs/O _h Cu ₂ O/Nafion/GCE	0.02- 4.3	8.4	+ 0.60	0.1 M NaOH	0.005- 5.3	2.8	-0.2	0.1 M PBS (pH 7.4)	3
Mn ₃ O ₄ /3DG	0.1-8	10	+0.4 0	0.1 M NaOH					4
Au nanocoral/Au	0.05 – 30.0	10	+0.2	0.1M PBS (pH 7.4)					5
Au NW	1-8	0.05	-0.16	(pH 7.4) PBS (pH 9.2)					6
CoPcTs/PNPGC	0.25 – 20	100	-	0.1 M NaOH					7
Ni(II)-Curcumin/GC	0.001 - 10	0.1	+0.35	0.1 M NaOH					8
poly[NiTRP]/GCE	0.0025- 1.0	360	+ 0.47	1M NaOH					9
CuHCF- AuNP/graphite wax	0.0086- 1.2	0.13	+ 0.59	0.1 М КОН	0 1 10	7.0	0.2		10
nano					0.1 - 10	7.0	-0.3	0.2 M PBS (pH 7.4)	11
Ag-MnOOH-GO/GCE					0.0005 - 17.8	0.2	-0.2	0.1 M PBS (pH 7.2)	12
CuO-SiNWs/GCE					0.01- 13.18	1.6	-0.3	PBS (pH 7.0)	13
CoOOH nanosheet/Co foil/Au					0-1.6	40	+ 0.1	0.1M NaOH	14
Fe(III)-MPBA- nanoporous gold/Au					0.0009 – 0.5	0.001	-		15
DNA-Cu(II)/GCE					0.0008 – 4.5	0.25	-0.25		16
[VO(acac) ₂]- PATP/Au	0.1-0.5	0.1	+0.65	0.1 M PBS (pH 7.0)	0.5 – 0.9	0.03	- 0.11	0.1 M PBS (pH 7.0)	Present work

Cu@M-Chit-CNT: Cu nanoparticles decorate on the modified chitosan–CNT; Cu₂O/GNs: Cu₂O nanocubes wrapped by graphene nanosheets); CQDs/O_h Cu₂O: carbon quantum dots (CQDs)/octahedral cuprous oxide(Cu₂O) nanocomposites; 3DG: Three dimensional graphene; Au NW: gold nanowire array electrode; CoPcTs (cobalt (II) phthalocyanine tetrasulfonate); PNPGC: polypyrrole nanofiber onto pencil graphite electrode; poly[NiTRP]: polymeric tetraruthenated nickel porphyrin films; CuHCF: Cu hexacyano ferrate; MPBA: 4-mercapto-3-(phosphonomethylamino) butanoic acid, AgNPs-G: Ag nanoparticles-graphene; Ag-MnOOH-GO: Silver nanoparticle- manganese oxyhydroxide- graphene oxide; SiNWs: silicon nanowires.

Table S2. Determination of glucose in blood sample and H_2O_2 in processed milk with $[VO(acac)_2]$ -4-PATP modified gold electrode

Analyte	Sample	Detected	Spiked	Found	RSD ^a	Recovery	
---------	--------	----------	--------	-------	------------------	----------	--

					(%)	(%)
Glucose	Blood	5.01 mM	0.5 mM	0.51 mM	2.24	100.2
H_2O_2	Milk	0.91 μM	1 μΜ	1.01 µM	2.16	101.0

^a Five times measurements were taken

References

- Ensafi, A. A.; M. Jafari-Asl, N. Dorostkar, M. Ghiaci, M. Victoria Mart´ınez-Huerta and J. L. G. Fierro, The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. *J. Mater. Chem. B* 2014, 2, 706 - 717.
- Liu, M.; Liu, R.; Chen, W. Graphene wrapped Cu₂O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. *Biosens. Bioelectron.* 2013, 45, 206 212.
- Li, Y.; Zhong, Y.; Zhang, Y.; Weng, W.; Li, S. Carbon quantum dots/octahedral Cu₂O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. *Sensors and Actuators B* 2015, 206, 735 - 743.
- Si, P.; Dong, X. C.; Chen, P.; Kim, D. H. A hierarchically structured composite of Mn₃O₄/3D graphene foam for flexible nonenzymatic biosensors. *J Mater Chem B* **2013**, 1, 110–115
- Cheng, T-M.; Huang, T-K.; Lin, H-K.; Tung, S-P.; Chen, Y-L.; Lee, C-Y.; Chiu, H-T. (110)-Exposed Gold Nanocoral Electrode as Low Onset Potential Selective Glucose Sensor. ACS Appl. Mater. Interfaces 2010, 2, 2773–2780.
- 6. Cherevko, S.; Chung, C. H. Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. *Sens Actuators B* 2009, 142, 216–223.
- Ozcan, L.; Sahin, Y.; Turk, H. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate. *Biosens. Bioelectron.* 2008, 24, 512 -517.
- 8. Elahi, M. Y.; Heli, H.; Bathaie, S. Z.; Mousavi, M. F. Electrocatalytic oxidation of glucose at a Nicurcumin modified glassy carbon electrode. *J. Solid State Electrochem.* **2007**, 11, 273 - 282.
- Quintino, M. d. S. M.; Winnischofer, H.; Nakamura, M.; Araki, K.; Toma, H. E.; Angnes, L. Amperometric sensor for glucose based on electrochemically polymerized tetraruthenated nickelporphyrin. *Anal. Chim. Acta* 2005, 539, 215 - 222.

- Sivasankari, G.; Priya, C.; Narayanan, S. S. Non-enzymatic amperometric glucose biosensor based on copper hexacyanoferrate-film modified- GNP-graphite composite electrode. *Int. J. Pharm. Bio. Sci.*, 2012, 2, 188 - 195.
- Zhang, Y.; Liu, S.; Wang, L.; Qin, X.; Tian, J.; Lu, W.; Chang, G.; Sun, X. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H₂O₂, and glucose sensing. *RSC Advances*, **2012**, 2, 538 - 545.
- Bai, W.; Nie, F.; Zheng, J.; Sheng, Q. Novel Silver Nanoparticle–Manganese Oxyhydroxide–Graphene Oxide Nanocomposite Prepared by Modified Silver Mirror Reaction and Its Application for Electrochemical Sensing. ACS Appl. Mater. Interfaces 2014, 6, 5439–5449.
- Huang, J.; Zhu, Y.; Zhong, H.; Yang, X.; Li, C. Dispersed CuO Nanoparticles on a Silicon Nanowire for Improved Performance of Nonenzymatic H₂O₂ Detection. ACS Appl. Mater. Interfaces 2014, 6, 7055–7062
- Lee, K. K.; Loh, P. Y.; Sow, C. H..; Chin, W. S.; CoOOH nanosheet electrodes: Simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine. *Biosens. Bioelectron.* 2013, 39, 255–260.
- 15. Zheng, M.; Li, P.; Yang, C.; Zhu, H.; Chen, Y.; Tang, Y. W.; Zhou, Y. M.; Lu, T. H. Ferric ion immobilized on three-dimensional nanoporous gold films modified with self-assembled monolayers for electrochemical detection of hydrogen peroxide. *Analyst* 2012, 137, 1182–1189
- Zeng, X.; Liu, X.; Kong, B.; Wang, Y.; Wei, W. A sensitive nonenzymatic hydrogen peroxide sensor based on DNA–Cu²⁺ complex electrodeposition onto glassy carbon electrode. *Sens Actuators B* 2008, 133, 381 - 386.