Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Complex	3a	3b	3c					
CCDC No.	1438097	1438098	1438099					
Empirical formula	C44H60N8O6Ti2	$C_{48}H_{68}N_8O_6Cl_4Zr_2$	C46H62N8O6 Cl6Hf2					
Molecular weight	892.74	1177.34	1392.7					
Crystal system	Monoclinic	Triclinic	Triclinic					
Space group	C2/c	P-1	P 1					
Temp/K	298(2)	298(2)	298(2)					
Wavelength (Å)	0.71073	0.71073	0.71073					
<i>a</i> (Å)	11.1634(4)	9.9338(13)	9.6702(3)					
<i>b</i> (Å)	24.5170(9)	11.1209(15)	10.9556(3)					
<i>c</i> (Å)	17.6569(6)	14.560(2)	14.5845(4)					
α (°)	90	106.403(6)	108.4480(10)					
β (°)	94.8010(10)	91.013(7)	90.6828(11)					
γ (°)	90	108.188(6)	101.2321(10)					
$V(Å^3)$	4815.6(3)	1456.0(4)	1433.15(7)					
Ζ	4	1	1					
D_{calc} (g/cm ³)	1.231	1.343	1.614					
Reflns collected	17890	15810	21435					
GOF	1.022	1.111	1.054					
F(000)	1888	608	688					
Final <i>R</i> indices $(I \ge 2\sigma(I))^a$	$R_1 = 0.0384,$	$R_1 = 0.0483,$	$R_1 = 0.0201,$					
	$wR_2 = 0.1006$	$wR_2 = 0.1281$	$wR_2 = 0.0474$					
R indices (all data)	$R_1 = 0.0538,$	$R_1 = 0.0640,$	$R_1 = 0.0228$,					
	$wR_2 = 0.1113$	$wR_2 = 0.1496$	$wR_2 = 0.0490$					
${}^{a}R_{I} = \sum F_{0} - F_{c} / \sum F_{0} , \ \mathbf{w}R_{2} = \left[\sum (F_{0}{}^{2} - F_{c}{}^{2})^{2} / \sum \mathbf{w}(F_{0}{}^{2})^{2}\right]^{1/2}$								

 Table S1. Crystal data for 3a, 3b and 3c

Fig. S1. ¹H NMR (500 MHz, CDCl₃) of L2(H)₂

Fig. S2. ¹³C NMR (125 MHz, CDCl₃) of L2(H)₂

Fig. S3. ESI-MS spectrum of L2(H)₂

Fig. S4. ¹H NMR (400 MHz, CDCl₃) of L3(H)₂

Fig. S5. ¹³C NMR (100 MHz, CDCl₃) of L3(H)₂

Fig. S6. ESI-MS spectrum of L3(H)₂

Fig. S7. ¹H NMR (500 MHz, CDCl₃) of 1a

Fig. S8. ¹³C NMR (125 MHz, CDCl₃) of 1a

Fig. S9. EI-MS spectrum of 1a

Fig. S10. ¹H NMR (500 MHz, CDCl₃) of 1b

Fig. S11. ¹³C NMR (125 MHz, CDCl₃) of 1b

Fig. S12. EI-MS spectrum of 1b

Fig. S13. ¹H NMR (500 MHz, CDCl₃) of 1c

Fig. S14. 13 C NMR (125 MHz, CDCl₃) of 1c

Fig. S15. EI-MS spectrum of 1c

Fig. S16. ¹H NMR (500 MHz, CDCl₃) of 2a

Fig. S17. ¹³C NMR (125 MHz, CDCl₃) of 2a

Fig. S18. EI-MS spectrum of 2a

Fig. S19. ¹H NMR (500 MHz, CDCl₃) of 2b

Fig. S20. ¹³C NMR (125 MHz, CDCl₃) of 2b

Fig. S21. EI-MS spectrum of 2b

Fig. S22. ¹H NMR (500 MHz, CDCl₃) of 2c

Fig. S23. ¹³C NMR (125 MHz, CDCl₃) of 2c

Fig. S24. EI-MS spectrum of 2c

Fig. S25. ¹H NMR (500 MHz, CDCl₃) of 3a

Fig. S26. ¹³C NMR (125 MHz, CDCl₃) of 3a

Fig. S27. EI-MS spectrum of 3a

Fig. S28. ¹H NMR (500 MHz, CDCl₃) of 3b

Fig. S29. ¹³C NMR (125 MHz, CDCl₃) of 3b

Fig. S30. EI-MS spectrum of 3b

Fig. S31. ¹H NMR (500 MHz, CDCl₃) of 3c

Fig. S32. ¹³C NMR (125 MHz, CDCl₃) of 3c

Fig. S33. EI-MS spectrum of 3c

Figure S34. ¹H NMR spectra in CDCl₃ a) ligand $[L3(H_2]; b)$ $[Ti(L3)(O'Pr)_2]_2$, 3a; c) $[Zr(L3)(O'Pr)_2]_2$, 3b; d) $[Hf(L3)(O'Pr)(OEt)]_2$, 3c.

Figure S35. ¹H NMR spectra of the methine region of **3a** in CDCl₃ at variable temperature a) 30 °C; b) 40 °C and c) 50 °C.

Fig. S36. Homonuclear decoupled ¹H NMR of the methine region of PLA prepared with *rac*-LA and 3c. [Heterotactic-rich, $P_r = 0.80$]

Fig. S37. Monomer (ε -CL and *rac*-LA) conversion *vs*. time plot initiated by 1at [M]_o/[C]_o= 200:1

Figure S38. ¹H NMR spectrum (in CDCl₃, 500 MHz) of the low molecular weight PLA obtained from *rac*-LA and **3a** at $[M]_0/[Cat]_0=15:1$ at 140 °C.

Figure S39. MALDI-TOF mass spectrum of the low molecular weight PLA obtained from *rac*-LA and **3a** at $[M]_o/[Cat]_o=15:1$ at 140 °C.

Fig. S40. Intramolecular transesterification products present in MALDI-TOF spectrum

Entry	Catalyst	Epoxide	Time	Conv. ^b	Yield ^c	TOF ^d	$M_{\rm n}^{\ e}({\rm obs})$	$M_{\rm w}/M_{\rm n}^{\rm e}$
		monomer	[h]	[%]	[%]	[h ⁻¹]	[kg mol ⁻¹]	
1	2a	СНО	8	80	76	100.00	28.25	1.28
2	2b	СНО	8	76	72	95.00	27.11	1.32
3	2c	СНО	8	75	74	93.75	26.67	1.33
4	1a	СНО	8	72	70	90.00	29.77	1.30
5	1b	СНО	8	69	66	86.25	25.54	1.36
6	1c	СНО	8	68	65	85.00	25.99	1.35
7	2a	PO	16	66	62	41.25	20.98	1.29
8	2b	PO	16	61	57	38.12	19.90	1.34
9	2c	PO	16	62	60	38.75	21.91	1.36
10	1a	PO	16	65	63	40.62	22.54	1.32
11	1b	PO	16	60	57	37.50	18.31	1.34
12	1c	PO	16	61	58	38.12	19.14	1.36
13	2a	SO	12	65	64	54.17	37.65	1.39
14	2b	SO	12	63	62	52.50	39.22	1.42
15	2c	SO	12	60	56	50.00	40.24	1.43
16	1a	SO	12	61	58	50.83	38.86	1.38
17	1b	SO	12	62	61	47.50	35.59	1.42
18	1c	SO	12	60	58	50.00	37.92	1.43

Table S2. Homopolymerization of rac-CHO, rac-PO and rac-SO catalyzed by 1a-1c and 2a-2c^a.

^{*a*}Polymerization conditions: $[M]_o/[C]_o = 1000$, under sovent-free. ^{*b*}Determined from ¹H NMR in CDCl₃ at 25 °C. ^{*c*}Based on gm of polymer obtained. ^{*d*}Turnover frequency (TOF) =Mol of epoxide×(mol of catalyst) ⁻¹ h⁻¹. ^{*e*}Measured by GPC at 27 °C in THF relative to polystyrene standards.

Fig. S41. Epoxide polymer yield (%) vs. time plot initiated by 3a at $[M]_0/[C]_0 = 1000:1$

Fig. S42. Plot for Activity versus temp using 3a for ethylene polymerization

Fig. S43. Plot for Activity versus [MAO]/[3a] ratio for ethylene polymerization

Fig. S44. Plot for effect of the solvent on the activity using 3a