Supporting Information

Iron Triad (Fe, Co, Ni) Trinary Phosphide Nanosheet Arrays as High-Performance Bifunctional Electrodes for Full Water Splitting in Basic and Neutral Conditions

Zhe Zhang^a, Jinhui Hao^{a,b}, Wenshu Yang^{a,b}, and Jilin Tang^{*a}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China E-mail: jltang@ciac.ac.cn. Tel/Fax: (+86) 431-85262734

^b University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China

Experimental Section

Chemicals. Ni(NO₃)₂·6H₂O and NaH₂PO₂ were purchased from Aladdin Aladdin Industrial Inc. (Shanghai, China). Polyvinylpyrrolidone (PVP, K30), Fe(NO₃)₃·9H₂O, amd Co(NO₃)₂·6H₂O were purchased from Shanghai Chemical Factory (Shanghai, China). NaNO₃ was purchased from Beijing Chemical Reagent Factory (Beijing, China). Platinum on carbon (20% Pt/C, Pt on Vulcan XC-72R carbon support) was purchased from Alfa Aesar. All the reagents were used as received without further purification. All aqueous solutions were prepared with Milli-Q water (>18.2 MΩ.cm) from a Milli-Q Plus system (Millipore).

Apparatus. X-ray photoelectron spectroscopy (XPS) measurement was performed on an ESCALABMK II spectrometer (VG Co., United Kingdom) with Al K α (hv = 1486.6 eV) X-ray radiation as the X-ray source for excitation. The energy step size for the binding energy (BE) values was 1 eV and 0.1 eV for survey spectrum and high resolution, respectively. X-ray diffraction (XRD) spectra was obtained on a D8 ADVANCE (Germany) using Cu Ka (1.5406 Å) radiation. Field emission scanning electron microscope (SEM) images were obtained on a Hitachi S-4800. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were obtained with a TECNAI G₂ high-resolution transmission electron microscope (Holland) with an accelerating voltage of 200 kV. The sample for TEM characterization was prepared by placing a drop of prepared solution on carboncoated copper grid and drying at room temperature. The compositions of Fe_xCo_vNi_z were determined by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES, X Series 2, Thermo Scientific USA). In order to avoid the impact of Ni foam substrate, Fe_xCo_yNi_z was synthesized via electrodeposition on Ti substrate for **ICP-OES** characterization.

Synthesis of $Fe_xCo_yNi_zP$. Samples were denoted as $Fe_xCo_yNi_zP$, in which x, y, and z stand for the molar concentration of Fe^{3+} , Co^{2+} and Ni^{2+} in the electrolyte. $Fe_xCo_yNi_zP$ was synthesized via electrodeposition of $Fe_xCo_yNi_z$ -LDH nanosheets array on Ni foam followed by low-temperature phosphidation process. Ni foam was cut into pieces of 10×30 mm² and ultrasonically cleaned in 3 M HCl for 15 min to

remove the NiO_x layer on the surface, and rinsed with Milli-Q water and absolute ethanol successively, then dried in air. The electrodeposition was performed on a CHI 660A electrochemical analyzer (CH Instruments, Inc., Shanghai) with a threeelectrode configuration consisting of a platinum plate as counter electrode, a saturated Ag/AgCl as reference electrode and Ni foam as working electrode. A 50 mL mixed solution of 30 mM Fe(NO₃)₃·9H₂O, 30 mM Co(NO₃)₂·6H₂O, 30 mM Ni(NO₃)₂·6H₂O, and 100 mg PVP was used as electrolyte bath. To optimize the compositions of the $Fe_xCo_yNi_z$ deposit, the total moles of Fe^{3+} , Co^{2+} and Ni^{2+} in the electrolyte were maintained at 90 mM while the molar ratio of Fe³⁺, Co²⁺ and Ni²⁺ was systematically varied. At the same time, the total moles of NO₃⁻ in the electrolyte were maintained at 210 mM using of NaNO₃. The constant potential electrodeposition was then carried out at -1.0V (versus saturated Ag/AgCl) at room temperature. The optimized deposition time of Fe_xCo_yNi_z has been determined to be 300 s. After electrodeposition, the Fe_xCo_yNi_z was carefully withdrawn from the electrolyte, rinsed with Milli-Q water and ethanol, then sonicated for 20 s in ethanol and left dry in air. The obtained Fe_xCo_yNi_z was transferred into a tubular furnace for phosphidation under N₂ gas. Two pieces of Fe_xCo_yNi_z and 500 mg NaH₂PO₂ were put at two separate positions in a fused silica tube with NaH₂PO₂ at the upstream side of the tubular furnace. Then the Fe_xCo_yNi_z was heated to 300 °C in N₂ gas and maintained at this temperature for 1 h with a heating rate of 3 °C min⁻¹. Black Fe_xCo_yNi_zP was obtained after cooled to room temperature under N₂ gas. For Fe₁₀Co₄₀Ni₄₀P electrode, the loading mass of $Fe_{10}Co_{40}Ni_{40}P$ is about 3.1 mg cm⁻².

Electrochemical Measurements: Electrochemical measurements were performed on a CHI 660A electrochemical analyzer (CH Instruments, Inc., Shanghai). Electrochemical measurements were performed in a conventional three-electrode system using $Fe_xCo_yNi_zP$ -Ni foam as the working electrode, saturated calomel electrode (SCE) as the reference electrode and carbon rod as the counter electrode. The potential, measured against a SCE electrode, was converted to the potential versus the reversible hydrogen electrode (RHE) according to $E_{vs RHE} = E_{vs SCE} + 0.242$ + 0.059pH. To prepare the Pt/C loaded electrode, Pt/C (18.6 mg) and 10 µL polytetrafluoroethylene (PTFE 10 wt%) were dispersed in 600 μ L N-methyl-2pyrrolidone (NMP) by 30 min sonication to form an ink. Then catalyst ink (100 μ L) was loaded on a 10×10 mm² Ni-foam with a catalyst loading of 3.1 mg cm⁻². Polarization curves were obtained using linear sweep voltammetry (LSV) with a scan rate of 2 mV s⁻¹. The long-term durability test was performed using chronopotentiometric measurements. Because as-measured reaction currents cannot reflect the intrinsic behaviour of electrocatalysts due to the effect of ohmic resistance, all currents present here are corrected against ohmic potential drop for further analysis.

Figure S1. LSV curves for HER (a) and OER (b) of $Fe_{10}Co_{40}Ni_{40}P$, $Fe_{20}Co_{35}Ni_{35}P$ and $Fe_{30}Co_{30}Ni_{30}P$ with a scan rate of 2 mV s⁻¹ in 1 M KOH. Cyclic voltammograms (c, d, e) at scan rates from 5 to 80 mV s⁻¹. Scan rate dependence of the current densities at 0.66 V vs RHE (f).

Figure S2. LSV curves for HER (a) and OER (b) of $Fe_{10}Co_{60}Ni_{20}P$, $Fe_{10}Co_{50}Ni_{30}P$, $Fe_{10}Co_{40}Ni_{40}P$, $Fe_{10}Co_{30}Ni_{50}P$, and $Fe_{10}Co_{20}Ni_{60}P$ with a scan rate of 2 mV s⁻¹ in 1 M KOH. Cyclic voltammograms (c, d, e, f, g) at scan rates from 5 to 80 mV s⁻¹. Scan rate dependence of the current densities at 0.66 V vs RHE (h).

Catalyst	Fe [mole%]	Co [mole%]	Ni [mole%]
Fe ₃₀ Co ₃₀ Ni ₃₀ P	59	19	13
Fe ₂₀ Co ₃₅ Ni ₃₅ P	35	33	22
Fe ₁₀ Co ₄₀ Ni ₄₀ P	18	47	25
Fe ₁₀ Co ₃₀ Ni ₅₀ P	16	40	34
Fe ₁₀ Co ₂₀ Ni ₆₀ P	14	26	51
Fe ₁₀ Co ₅₀ Ni ₃₀ P	19	55	16
Fe ₁₀ Co ₆₀ Ni ₂₀ P	19	61	10
Fe ₁₈ Co ₇₂ Ni ₀₀ P	26	60	
Fe ₁₈ Co ₀₀ Ni ₇₂ P	33		57
Fe ₀₀ Co ₄₅ Ni ₄₅ P		57	33

Table S1. ICP-OES data of compositional mole of Fe, Co and Ni in various samples

Figure S3. LSV curves of $Fe_{10}Co_{40}Ni_{40}P$ scanning from negative to positive potentials (forward scan) and scanning from positive to negative potentials (reverse scan) in 1 M KOH.

Catalyst	Water electrolysis test	Current density (10 mA cm ⁻²)	Overpotential (mV)	Reference
Fe ₁₀ Co ₄₀ Ni ₄₀ P	HER	10	68	
	OER	10	250	 This work
Ni ₃ S ₂ /NF	HER	10	223	J. Am. Chem. Soc. 2015,
	OER	10	260	10.1021/jacs.5b08186
CoO @CN	HER	10	232	J. Am. Chem. Soc. 2015,
CoO _x @CN	OER	10	260	137, 2688-2694
Co-P films	HER	10	94	Angew. Chem. Int.Ed.
Co-P mins	OER	10	345	2015 , <i>54</i> , 6251-6254.
NI: D	HER	10	150	Angew. Chem. Int.Ed.
11151 4	OER	10	290	2015 , <i>54</i> , 12361-12365.
Co phosphide/ Co phosphate	HER	10	380	Adv. Mater. 2015, 27,
	OER	10	300	3175-3180
NiSe Nanowire	HER	10	96	Angew. Chem. Int.Ed.
	OER	20	270	10.1002/anie.201503407
Ni-NiO/N-rGO	HER	20	160	Adv. Funct. Mater. 2015,
M-MO/M-IOO	OER	10	240	25, 5799-5808
MnNi _x •	HER	10	360	Adv. Funct. Mater. 2015,
	OER	10	430	25, 393-399
ultra-small NiFeO _x	HER	10	88	Nat. Commun. 2015, 6,
	OER	10	250	7261
NiCo ₂ O ₄ nanowires array	HER	50	263	Nanoscale 2015 , 7,
	OER	20	280	15122-15126
Ni/N/C	HER	10	190	Adv. Energy Mater. 2015,
	OER	10	390	10.1002/aenm.201401660

Table S2. Comparison of the electrocatalytic performance of $Fe_{10}Co_{40}Ni_{40}P$ in basic media with other bifunctional full water splitting electrocatalysts.

Figure S4. LSV curves of water electrolysis for $Fe_{10}Co_{40}Ni_{40}P$ in a two-electrode configuration scanning from negative to positive potentials (forward scan) and scanning from positive to negative potentials (reverse scan) in 1 M KOH.

Figure S5. SEM (a-c) images and corresponding EDX (d) spectrum of $Fe_{10}Co_{40}Ni_{40}P$ after HER test in 1 M KOH.

Figure S6. SEM (a-c) images and corresponding EDX (d) spectrum of $Fe_{10}Co_{40}Ni_{40}P$ after OER test in 1 M KOH.

 Table S3. Comparison of the electrocatalytic performance of Fe10Co40Ni40P in neutral media with other electrocatalysts.

 Catalyst
 Water
 Current density
 Overpotential
 Reference

 HER
 10
 88

	electrolysis test	(10 mA cm ⁻²)	(mV)		
Fe ₁₀ Co ₄₀ Ni ₄₀ P	HER	10	88	- This work	
	OER	10	466		
H ₂ -NiCat/	HER	1.5	452	J. Phy Chem. C, 2014,	
O ₂ -NiCat	OER	0.6	618	118, 4578-4584	
Co-NRCNTs	HER	1	330	Angew. Chem. Int.Ed. 2014 , <i>53</i> , 4372-4376.	
CoP/CC	HER	2	65	J. Am. Chem. Soc. 2015, 137, 7587-7590	
Mo ₂ C	HER	1	200	Angew. Chem. Int.Ed. 2012 , <i>51</i> , 12703-12706.	
Co ₃ S ₄ Nanosheets	OER	4	700	Angew. Chem. Int.Ed. 2015 , 54, 12231-12235.	
Co ₃ O ₄	OER	0.62	650	Adv. Funct. Mater. 2013, 23, 227-233	
Mn ₃ (PO ₄) ₂ ·3H ₂ O	OER	0.3 _{cat}	260	J. Am. Chem. Soc. 2014, 136, 7435-7443	

Figure S7. LSV curves for HER (a) and OER (b) of $Fe_{90}Co_{00}Ni_{00}P$, $Fe_{00}Co_{90}Ni_{00}P$, $Fe_{00}Co_{00}Ni_{90}P$, and $Fe_{10}Co_{40}Ni_{40}P$ with a scan rate of 2 mV s⁻¹ in 1 M KOH.

Figure S8. LSV curves for HER (a) and OER (b) of $Fe_{18}Co_{72}Ni_{00}P$, $Fe_{18}Co_{00}Ni_{72}P$, $Fe_{00}Co_{45}Ni_{45}P$, and $Fe_{10}Co_{40}Ni_{40}P$ with a scan rate of 2 mV s⁻¹ in 1 M KOH.

Catalyst	η ₁₀ at 10 mA cm ⁻² for HER (mV)	η ₅₀ at 50 mA cm ⁻² for HER (mV)	η ₁₀ at 10 mA cm ⁻² for OER (mV)	η ₅₀ at 50 mA cm ⁻² for OER (mV)
Fe ₃₀ Co ₃₀ Ni ₃₀ P	111	129	230	268
Fe ₂₀ Co ₃₅ Ni ₃₅ P	92	131	234	261
$Fe_{10}Co_{40}Ni_{40}P$	68	110	250	277
Fe ₁₀ Co ₃₀ Ni ₅₀ P	89	106	242	270
Fe ₁₀ Co ₂₀ Ni ₆₀ P	74	120	245	280
Fe ₁₀ Co ₅₀ Ni ₃₀ P	80	119	252	281
$Fe_{10}Co_{60}Ni_{20}P$	69	105	250	276
Fe ₁₈ Co ₇₂ Ni ₀₀ P	66	110	257	304
Fe ₁₈ Co ₀₀ Ni ₇₂ P	134	187	230	254
Fe ₀₀ Co ₄₅ Ni ₄₅ P	73	109	279	323
Fe ₉₀ Co ₀₀ Ni ₀₀ P	111	164	292	349
Fe ₀₀ Co ₉₀ Ni ₀₀ P	74	114	268	326
Fe ₀₀ Co ₀₀ Ni ₉₀ P	142	210	241	278

Table S4. Electrocatalytic performance of $Fe_xCo_yNi_zP$ as bifunctional water splittingelectrocatalysts.