## **Supporting Information**

## A Phenazine–based Near-infrared (NIR) Chemodosimeter for Cysteine Obtained via a Carbonyl-assisted Cycloaddition Process

Yi Qu,<sup>a,\*</sup>Xiao Zhang,<sup>b</sup>Linlin Wang,<sup>a</sup>Huiran Yang,<sup>c</sup>Lin Yang,<sup>b</sup>Jian Cao<sup>a</sup>

and Jianli Hua<sup>b,\*</sup>

a.College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 201620, Shanghai China.

- b. Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East
  China University of Science and Technology, 200237, Shanghai, China.
  - c. Department of Chemistry, Fudan University, 200433, Shanghai, China.

## Outline

| NMR and HRMS spectra                               | S1-S13 |
|----------------------------------------------------|--------|
| Plots for calculating the Detection Limited values |        |
| UV-vis method                                      | S14    |
| Emission method                                    | S15    |
| Excitation method                                  | S16    |
| MTT assay for valuating the cytotoxicity           | S17    |



Figure S2. <sup>13</sup>C NMR of compound **2** in C<sub>6</sub>D<sub>6</sub>.

200 190 180 170 160 150 140 130 120 110 100 90 80 70



Figure S3. ESI-MS spectrum of compound 2



Figure S4. <sup>1</sup>H NMR spectrum of compound **3** in CDCl<sub>3</sub>.



Figure S5. <sup>13</sup>C NMR spectrum of compound 3 in CDCl<sub>3</sub>.



Figure S6. ESI-TOF mass spectrum of 3



Figure S7. <sup>1</sup>H NMR of compound 4 in DMSO-*d*<sup>6</sup>.



Figure S8. <sup>13</sup>C NMR of compound **4** in DMSO-*d*<sup>6</sup>.



Figure S9. ESI mass spectrum of compound 4

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

| Р | H | ıs | -I | ۲ |
|---|---|----|----|---|
|   |   |    |    |   |

|                        |                  |                   |               |                        |                   |                              |                       | 2015-6-17   + 02:01:09 |
|------------------------|------------------|-------------------|---------------|------------------------|-------------------|------------------------------|-----------------------|------------------------|
| Acquisition Time (sec) | 3.9846           | Comment           | 5 mm PABBO BB | -1H/D Z-GRD Z104450/00 | 38                | Date                         | 24 Jun 2015 08:21:20  |                        |
| Date Stamp             | 24 Jun 2015 08:2 | 1:20              |               | File Name              | C:\Users\qy\Deskt | top\print\wll-20150624\wll-2 | 20150624\1\pdata\1\1r |                        |
| Frequency (MHz)        | 400.13           | Nucleus           | 1H            | Number of Transients   | 16                | Origin                       | spect                 |                        |
| Original Points Count  | 32768            | Owner             | nmrsu         | Points Count           | 32768             | Pulse Sequence               | zg30                  |                        |
| Receiver Gain          | 322.00           | SW(cyclical) (Hz) | 8223.68       | Solvent                | CHLOROFORM-       | d                            |                       |                        |
| Spectrum Offset (Hz)   | 2465.1101        | Spectrum Type     | STANDARD      | Sweep Width (Hz)       | 8223.43           | Temperature (degree C)       | 26.260                |                        |

<sup>1</sup>H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.05 (q, J=7.03 Hz, 6 H) 1.46 - 1.54 (m, 4 H) 1.59 (br. s., 4 H) 1.67 (br. s., 4 H) 3.48 (br. s., 4 H) 6.26 (d,



Fig S10. <sup>1</sup>H NMR spectrum of **PHS** in CDCl<sub>3</sub>.



Fig S11. <sup>13</sup>C NMR spectrum of **PHS** in CDCl<sub>3</sub>.



Fig S12. HRMS spectrum of PHS



Fig S13. (a) Ratiometric plots of **PHS** with absorbance at 296 nm, 376 nm, 457 nm and 616 nm. (b) Detection limited of **PHS** by UV-vis spectra (Data were collected at 616 nm). The intensity was normalized between the minimum absorbance, found at  $16~\mu M$  Cys, and the maximum absorbance, found at zero Cys (shown on the graph as 1~nM).



Fig S14. (a) Intensity enhancement plots of **PHS** at 670 nm. (b) Detection limited of **PHS** by emission spectra (Data were collected at 670 nm). The intensity was normalized between the minimum emission intensity, found at zero cys (shown on the graph as 1 nM), and the maximum absorbance, found at 16  $\mu$ M Cys.



Fig S15. (a) Excitation intensity enhancement plots of **PHS** at 452 nm. (b) Detection limited of **PHS** by emission spectra (Data were collected at 452 nm). The intensity was normalized between the minimum emission intensity, found at zero Cys (shown on the graph as 1 nM), and the maximum absorbance, found at 16  $\mu$ M Cys.



Fig S16.MTT assay of PHS with 0~ 100  $\mu M$  Cys.