Supporting Information:

Glucose-assisted hydrothermal synthesis of few-layer reduced graphene oxide wrapped mesoporous TiO₂ submicrospheres with enhanced electrochemical performance for lithium-ion batteries

Jun Peng^a, Gang Wang^{a*}, Yongtao Zuo^a, Gang Li^a, Yu Feng^{a*}, Bin Dai^a, Xuhong Guo^{a,b}

Table S1 Zeta potentials of the amorphous TiO₂ submicrospheres and grapheme oxide in aqueous solutions under the specified conditions

	GO solution	TiO ₂ solution (pH=2)	TiO ₂ solution (pH=6.5)
Zeta-potential (mV)	-32.50	14.37	0.004

Fig. S1 TEM images of m-TiO₂@FL-RGO composite synthesized in the absence of glucose.

Figure S2 SEM image of the m-TiO₂@RGO electrode at 0.6C after 100 cycles

Figure S3 Rate performance of RGO at various current densities between 0.6C and 30C (1C = 168 mA g^{-1})

Strategies	Materials	Rate Performance*	Ref.
Wrapped Model	m-TiO ₂ @FL-RGO	202.5 mAh g ⁻¹ (100 cycles) at 0.6C 159.3 mAh g ⁻¹ (100 cycles) at 6C 113.5 mAh g ⁻¹ (10 cycles) at 30C	Our work
	TiO ₂ /RGO	150 mAh g^{-1} (100 cycles) at 5C	1
	G-TiO ₂	170 mAh g ⁻¹ (100 cycles) at 10C	2
	MTO-G	197 mAh g ⁻¹ (100 cycles) at 0.5C	3
	UTO/NGF	168 mAh g^{-1} (50 cycles) at 1C	4
	TiO ₂ (B)-G scrolls	$\sim 153 \text{ mAh g}^{\text{-1}}$ (300 cycles) at 10C	5
	GS-TiO ₂	150 mAh g ⁻¹ (100 cycles) at 1C	6
	SA-TiO ₂ @graphene	205.1 mAh g ⁻¹ (100 cycles) at 0.5C	7
Anchored model	TiO ₂ /GAs	200 mAh g ⁻¹ (50 cycles) at 0.59C	8
	G@mTiO ₂	237 mAh g ⁻¹ (100 cycles) at 0.12C	9
	TiO ₂ -GNS	197 mAh g ⁻¹ after (50 cycles) at 0.3C	10
	TiO ₂ -RGO	210 mAh g ⁻¹ (100 cycles) at 0.6C	11
	TiO ₂ -G	160 mAh g ⁻¹ (100 cycles) at 0.36C	12
	TO/GS	150 mAh g ⁻¹ (100 cycles) at 10C	13
	NPG-T	155 mAh g ⁻¹ (100 cycles) at 36C	14
	G-TiO ₂	200 mAh g ⁻¹ (30 cycles) at 0.2C	15
	TiO ₂ -QDs/GNs	$\sim 190 \text{ mAh g}^{-1}$ (100 cycles) at 1 C	16
	G-TiO ₂ -N	288.6 mAh g ⁻¹ (1000 cycles) at 30C	17
	TiO ₂ /graphene	140.3 mAh g ⁻¹ (100 cycles) at 30C	18
	TiO ₂ -RGO	112.3mAh g ⁻¹ (100 cycles) at 10C	19
	TiO ₂ @rGO	186.6mAh g ⁻¹ (100 cycles) at 0.6C	20

Table S2 The representative TiO₂/graphene composites for LIBs anode materials

 $*1C = 168 \text{ mA g}^{-1}$

Reference

- [1] X. Yan, Y. J. Li, F. Du, K. Zhu, Y. Q. Zhang, A. Y. Su, G. Chen and Y. J. Wei, Nanoscale, 2014, 6, 4108.
- [2] Z.L. Xiu, X.P. Hao, Y.Z. Wu, Q.F. Lu, S.W. Liu. J. Power Sources.2015, 287,334-340
- [3] S. X. Yu, L. W. Yang, Y. Tian, P. Yang, F. Jiang, S. W. Hu, X. L. Wei and J. X. Zhong, J. Mater. Chem. A, 2013, 1, 12750.
- [4] X. Jiang, X.L. Yang, Y.H. Zhu, H.L. Jiang, Y.F. Yao, P. Zhao and C.Z. Li, J. Mater. Chem. A, 2014, 2, 11124.
- [5] X.L. Li, Y.L. Zhang, T.T. Li, Q.N. Zhong, H.Y. Li, J.M. Huang, J. Power Sources.2014,268,372.
- [6] J. S. Chen, Z. Wang, X. C. Dong, P. Chen and X. W. Lou, Nanoscale, 2011, 3, 2158.
- [7] T. F. Zhou, Y. Zheng, H. Gao, S.D. Min, S. A. Li, H.K. Liu and Z. P. Guo. Adv. Sci, DOI:101002/advs.201500027.

- [8] B. C. Qiu, M. Y. Xing and J. L. Zhang, J. Am. Chem. Soc., 2014, 136, 5852.
- [9] W. Li, F. Wang, Y.P. Liu, J.X. Wang, J.P. Yang, L.J. Zhang, A. A. Elzatahry, D. Al-Dahyan, Y.Y. Xia, D.Y. Zhao, Nano Lett, 2015,15, 2186
- [10] H.C. Tao, L.Z. Fan, X.Q. Yan, X.H. Qu, Electrochim. Acta, 2012, 69, 328.
- [11] J. Qiu, P. Zhang, M. Ling,; S. Li, P. Liu, H. Zhao, S. Zhang, ACS Appl. Mater. Interfaces, 2012, 4, 3636.
- [12] Q. Q. Zhang, R. Li, M. M. Zhang, B. L. Zhang and X. L. Gou, J. Energy Chem., 2014, 23, 403.
- [13] N. Li , G. Liu , C. Zhen, F. Li, L.L. Zhang and H.M.Cheng, Adv Funct. Mater, 2011, 21, 1717
- [14] C.J. Chen, X.L. Hu, Y. Jiang, Z. Yang, P. Hu and Y.H. Huang, Chemistry-a European Journal 2014, 20, 1383.
- [15] S. Yang, X. Feng, K. Muellun, Adv. Mater. 2011, 23, 3575.
- [16] R. Mo, Z. Lei, K. Sun, D. Rooney, Adv. Mater. 2014, 26, 2084
- [17] G.H. Qin, H.J. Zhang, C.Y. Wang, J. Power Sources, 2014, 272, 491
- [18] J.X. Qiu, C. Lai, Y.Z. Wang, S. Li, S.Q. Zhang, Chem. Eng. J. 2014, 256, 247
- [19] L. Dong, M.S. Li, Lei Dong, M.L. Zhao, J.M. Feng, Y. Han, J.H. Deng, X.F. Li, D.J. Li, X.L. Sun, Int J Hydrogen Energy 2014, 39, 16116
- [20] H.Q. Liu, K.Z. Cao, X.H. Xu, L.F. Jiao, Y.Y. Wang and H.T. Yuan, ACS Appl. Mater. Interfaces, 2015, 7, 11239.

Sample	The adding amounts of GO (mg mL ⁻¹)	C contents (wt. %)
2.2 wt.% graphene-wrapped m-TiO ₂	2.5	2.21
4.8 wt.% graphene-wrapped m-TiO ₂	5	4.77
8.4 wt.% graphene-wrapped m-TiO ₂	10	8.43

Table S3 The relative graphene compositions of graphene-wrapped m-TiO $_2$ samples. The carbon contents were measured by a CHNS elemental analyzer.

Fig. S4 Cycling performance of m-TiO₂@RGO samples with different RGO contents at a current density of 6C.