Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

Hydrogen-bonded bent-core blue phase liquid crystal complexes containing various molar ratios of proton acceptors and donors

Chun-Chieh Han, Yu-Chaing Chou, San-Yuan Chen and Hong-Cheu Lin*

Department of Materials Science and Engineering, National Chiao Tung University. 1001 University Road, Hsinchu, Taiwan.

*Corresponding author. Email: linhc@mail.nctu.edu.tw (Prof. Hong-Cheu Lin)

(1) Phase transition temperatures^{a,b} (°C) and enthalpies (KJ mol⁻¹) for H-bonded bent-core complexes by DSC.....pages S2-S4.

(2) Additional synthetic details (for Fig. 1 in the main text).....pages S5-S14

(3) Additional information of H-bonded bent-core complexes....page S15

(4). Identification of molecular structure (1H NMR and 13C NMR).....page S16-S17

Table S1 Phase transition temperatures^{a,b} ($^{\circ}$ C) and enthalpies (KJ mol⁻¹) of H-bonded bent-core complexes containing H-accepters T ($P_{III}C_5$, $P_{III}C_7$ and $P_{III}C_9$)

and	various	molar	ratios	of H-donor	A _{II} F*.
-----	---------	-------	--------	------------	---------------------

Complexes	Molar ratio (H-donor V.S. H-acceptor)	Phase transition temperatures (°C) [enthalpies (KJ mol ⁻¹)]	ΔT_{BPI} (°C)
	55 : 45	Iso 76.4 [0.13] BPI 72.8 ^c N* 43.3 [1.13] K	3.6
	60 : 40	Iso 77.9 [0.25] BPI 73.6 ^c N* 46.2 [1.23] K	4.3
	65 :35	Iso 84.5 [0.28] BPI 76.1° N* 52.1 [1.34] K	8.4
	70 : 30	Iso 91.1 [0.08] BPI 80.3° N* 60.4 [0.96] K	10.8
P _{III} C ₅ /A _{II} F*	75 : 25	Iso 101.3 [0.18] BPI 94.8° N* 67.0 [1.17] K	6.5
	80 : 20	Iso 104.4 [0.96] N* 73.2 [1.52] K	
	85 : 15	Iso 114.2 [1.24] N* 82.1 [1.44] K	
	90 : 10	Iso 144.3 [0.96] N* 102.6 [1.11] K	
	95 : 5	Iso 77.4 [1.21] N* 43.3 [1.61] K	
	55 : 45	Iso 95.5 [0.22] BPI 87.7 ^c N* 59.4 [0.87] K	7.8
	60 : 40	Iso 100.5 [0.37] BPI 88.9° N* 59.5 [1.49] K	11.6
	65 :35	Iso 106.1 [0.42] BPI 97.3° N* 69.8 [0.90] K	8.8
	70 : 30	Iso 109.7 [0.27] BPI 102.2° N* 76.3 [1.16] K	7.5
P _{III} C ₇ /A _{II} F*	75 : 25	Iso 122.4 [0.88] N* 87.2 [1.20] K	
	80 : 20	Iso 128.9 [1.22] N* 88.8[1.37] K	
	85 : 15	Iso 136.7 [1.17] N* 89.5 [1.19] K	
	90 : 10	Iso 144.6 [0.95] N* 92.9 [1.04] K	
	95 : 5	Iso 146.5 [0.78] N* 95.7 [1.20] K	
	55 : 45	Iso 95.3 [0.34] BPI 88.3° N* 60.7 [1.23] K	7
	60 : 40	Iso 101.9 [0.34] BPI 92.8 ^c N* 60.3 [1.22] K	9.1
	65 :35	Iso 105.4 [0.11] BPI 96.8 ^e N* 62.3 [1.00] K	8.6
	70 : 30	Iso 114.5 [0.25] BPI 102.5 ^c N* 67.3 [1.60] K	12
P _{III} C ₉ /A _{II} F*	75 : 25	Iso 117.7 [0.18] BPI 106.8 ^c N* 71.4 [0.87] K	10.9
	80 : 20	Iso 125.4 [0.23] BPI 114.7 ^c N* 76.8 [0.85] K	10.7
	85 : 15	Iso 134.2 [1.25] N* 83.5 [1.55] K	
	90 : 10	Iso 136.9 [1.24] N* 95.2 [1.53] K	
	95 : 5	Iso 140.7 [1.09] N* 926 [1.21] K	
A _{II} F*/A _{II} F*	100 : 0	Iso 150.1 [1.15] N* 97.8 [1.44] K	

^aPeak temperatures in the DSC profiles obtained during the first cooling at a rate of 0.5 °C min⁻¹. ^bIso = isotropic phase; BPI = blue phase I; N* = chiral nematic phase; K = crystalline phase. ^cThe transition to this phase was observed under the polarizing optical microscope (POM) and it was too weak to be recognized by the DSC.

Table S2 Phase transition temperatures^{a,b} (°C) and enthalpies (KJ mol⁻¹) of covalent-bonded bent-core mixtures containing covalent-bonded bent-core molecule

PmC₀AnF*	and various	molar ratios	of H-donor Aul	F*.
----------	-------------	--------------	----------------	-----

Mixtures	Mola	r ratio (H-donor V.S. H-acceptor)	Phase transition temperatures (°C)		
	H-donor	Covalent-bonded bent-core molecule	[enthalpies (KJ mol-1)]	$\Delta I_{\text{BPIII}}(^{\circ}\text{C})$	
	0	100	Iso 127.3 [3.01] K		
	18.2	81.8	Iso 84.1 [2.28] K		
	33.3	66.7	Iso 71.2 [2.28] K		
	46.2	53.8	Iso 86.4 [1.98] K		
ԲաԸ₀ AսF*/AսF*	57.1	42.9	Iso 89.3 [1.93] K		
	66.7	33.3	Iso 110.2 [0.44] N* 84.2 [1.19] K		
	75	25	Iso 102.3 [0.51] BPIII 99.9° N* 83.7 [1.62] K	2.4	
	82.4	17.6	Iso 108.6 [0.35] BPIII 107.5° N* 84.8 [1.36] K	1.1	
	88.9	12.1	Iso 126.6 [0.30] N* 89.1 [1.11] K		
	94.7	5.3	Iso 140.7 [0.38] N* 100.3 [1.19] K		
	100	0	Iso 150.3 [0.40] N* 97.8 [1.55] K		

^aPeak temperatures in the DSC profiles obtained during the first cooling at a rate of 0.5 °C min⁻¹. ^bIso = isotropic phase; BPIII = blue phase III; N* = chiral nematic phase; K = crystalline phase. ^cThe transition to this phase was observed under the polarizing optical microscope (POM) and it was too weak to be recognized by the DSC.

	Molar ratio (H-donor V.S. H-acceptor)			eptor)		
Complexes	H-accepter	H-donor			Phase transition temperatures (°C)	$\Delta T_{\rm BP}$ (°C)
	P _{III} C ₉	A _{II} F*	A _{II} F	A _{II} *	[enthalples (KJ mor ⁻¹)]	
	30	70	-	-	Iso 114.5 [0.25] BPI 102.5° N* 67.3 [1.60] K	12
	30	63	7	-	Iso 115.8 [0.34] BPI 105.7° N* 71.7 [1.13] K	10.1
	30	56	14	-	Iso 120.6 [0.30] BPI 111.8° N* 76.3 [0.94] K	8.8
	30	49	21	-	Iso 123.5 [0.17] BPI 117.6° N* 80.6 [1.24] K	5.9
$P_{III}C_{9}/(A_{II}F^*+A_{II}F)$	30	42	28	-	Iso 124.9 [0.24] BPI 120.7° N* 88.3 [1.12] K	4.2
)	30	35	35	-	Iso 126.7 [0.40] BPI 124.8° N* 92.9 [1.09] K	1.9
	30	28	42	-	Iso 127.1 [0.17] BPI 126.8° N* 97.2 [1.17] K	0.3
	30	21	49	-	Iso 131.9 [0.27] BPI 131.4° N* 104.1 [0.96] K	0.5
	30	14	56	-	Iso 134.4 [1.11] N* 110.2 [1.66] K	
	30	7	63	-	Iso 133.7 [0.85] N* 113.6 [1.60] K	
	30	63	-	7	Iso 114.2 [0.23] BPI 105.1° N* 68.2 [1.28] K	9.1
P _{III} C ₉ /(A _{II} F*+A _{II} F) P _{III} C ₉ /(A _{II} F*+A _{II} *)	30	56	-	14	Iso 113.5 [0.25] BPI 110.6° N* 72.4 [1.17] K	2.9
	30	49	-	21	Iso 113.1 [0.32] BPI 112.4° N* 75.9 [1.10] K	0.7
	30	42	-	28	Iso 111.8 [0.99] N* 77.4 [1.18] K	
$P_{III}C_9\!/(A_{II}F^*\!+\!A_{II}^*)$	30	35	-	35	Iso 110.3 [1.26] N* 79.5 [1.17] K	
	30	28	-	42	Iso 110.7 [1.20] N* 80.6 [1.51] K	
	30	21	-	49	Iso 108.4 [1.19] N* 82.1 [1.65] K	
	30	14	-	56	Iso 108.0 [0.80] N* 84.6 [1.15] K	
	30	7	-	63	Iso106.4 [0.70] N* 85.9 [1.38] K	

Table S3 Phase transition temperatures^{a,b} (°C) and enthalpies (KJ mol⁻¹) of hybrid H-bonded ben-core complexes containing H-accepters T ($P_{III}C_5$, $P_{III}C_7$ and $P_{III}C_9$) and hybrid H-donors D ($A_{II}F^*+A_{II}F$ and $A_{II}F^*+A_{II}^*$).

^aPeak temperatures in the DSC profiles obtained during the first cooling at a rate of 0.5 °C min⁻¹. ^bIso = isotropic phase; BPI = blue phase I;N* = chiral nematic phase; K = crystalline phase. ^cThe transition to this phase was observed under the polarizing optical microscope and it was too weak to be recognized by the DSC.

Additional details on the methods

Preparation of H-donors D (A₁F*, A₁₁F*, A₁₁F and A₁₁*), H-accepters T (P_{1V}C₉, P₁₁₁C₅, P₁₁₁C₅, P₁₁₁C₉), and covalent-bonded bent-core molecules (P₁₁₁C₅A₁₁F* and $P_{III}C_9A_{II}F^*$):

Scheme S1. Synthesis of H-donors D (A_IF*, A_{II}F*, A_{II}F and A_{II}*). NaOH, Br₂ BBr₃ Toluene, H₂SO₄ MeOH, 80°C DCM alpha 20/D +9.5°, neat HO кон PPh3, DIAD, THF, 0°C MeOH, 80°C A_IF* BnO Pd/C, H₂ DCC, DMAP, DCM THF AπF Bn K2CO3, KI, acetone, reflux DCC, DMAP, DCM Pd/C, H₂ THF кон MeC PPh3, DIAD, THF, 0°C MeOH, 80°C 10 Pd/C, H₂ DCC, DMAP, DCM THF 11 A_{II}*

(i) Synthesis of 2-fluro-4-methoxybenzoic acid (1)

2-fluoro-4-methoxyacetophenone (5g, 29.8mmol) was dissolved in 1,4-dioxane. NaOH (3.57g, 89.3mmol) was dissolved in DI water, then bromine (4.75g, 29.8mmol) was slowly added into the aqueous solution. The above two solutions were mixed at 0°C under ice bath, and the mixing solution was reacted at room temperature for overnight. The mixture was extracted by DI water/DCM, then aqueous phase maintain acidity at pH=3 by HCl. The sample 1 was got by filtration and water washing, and the sample 1 was white solid (yield: 90%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.9(d, J = 8.7 Hz, 1H, Ar-H), 7.83-7.78 (d, J = 8.7 Hz, 1H, Ar-H), 7.02 (t, J = 9.0 Hz, 1H, Ar-H), 3.97 (s, 3H, -OCH₃).

(ii) Synthesis of 2-fluoro-4-hydroxybenzoic acid (2)

The sample 1 (4.9g, 28.8mmol) was dissolved in dry DCM (30ml), then BBr₃ (14.4g, 57.6mmol) was slowly added into DCM solution at -78°C. After uniformly mixed, the solution was reacted at room temperature for 16 hours. Then reaction was terminated by adding 2N NaOH into DCM solution. The mixture was extracted by DI water/ethyl acetate, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The sample **2** was white solid (yield: 95%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.62-7.58 (m, 1H, Ar-H), 7.01 (t, *J* = 9.0Hz, 2H, Ar-H).

(iii) Synthesis of 2-fluoro-4-hydroxybenzoic acid (3)

The sample **2** (5g, 32mmol) and H₂SO₄ (7ml) were dissolved in MeOH, then the solution was reacted at 90°C for 12 hours. The mixture was extracted by DI water/ethyl acetate, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/ethyl acetate = 3:1, v/v). The sample **3** was a white solid (yield: 80%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.76 (d, *J* = 8.7 Hz, 1H, Ar-H), 7.74 (d, *J* = 8.7 Hz 1H, Ar-H), 7.06 (d, *J* = 9.0 Hz 1H, Ar-H), 6.10 (s,1H, Ar-OH), 3.91 (s, 3H, -OCH₃).

(iv) Synthesis of methyl 4-((R)-octan-2-yloxy)-2-fluorobenzoate (4)

The sample **3** (5g, 29.4mmol) and PPh₃ (8.89g, 33.8mmol) were dissolved in dry DCM upon nitrogen system, then (S)-(+)-2-octanol ([α]20/D +9.5°, neat) (4.6g, 35.2mmol) and DIAD (8.9g, 44mmol) were added in the solution at 0°C under ice bath. The solution reacted at room temperature for more than 12 hours, then mixture was concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **4** was a light yellow oil (yield: 85%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.92 (d, *J* = 9.0 Hz, 1H, Ar-H), 7.25 (d, *J* = 8.7Hz, 1H, Ar-H), 6.87 (d, *J* = 8.7 Hz, 1H, Ar-H), 4.30 (m,1H, -OCH-), 3.84 (s, 3H, -OCH₃), 1.71-1.57 (m, 2H, -CH₂-), 1.42-1.25 (m, 11H, -CH₂CH₃), 0.83 (t, *J* = 6.0 Hz, 3H, -CH₃).

(v) Synthesis of 4-((R)-octan-2-yloxy)-2-fluorobenzoic acid (A_IF*)

The sample **4** (10g, 35.5mmol) and KOH (5.95g, 106mmol) were dissolved in MeOH, then the solution was reacted at 90°C for 24 hours. The mixture was concentrated by a rotary evaporator, then HCl aqueous solution was added to until pH=3. The product A_IF^* was a light yellow solid (yield: 89%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.96 (t, *J* = 8.7 Hz, 1H, Ar-H), 6.71 (d, *J* = 9.0 Hz, 1H, Ar-H), 6.50 (d, *J* = 9.0 Hz, 1H, Ar-H), 4.41 (m, 1H, -OCH-), 1.79-1.60 (m, 2H, -CH₂-), 1.47-1.26 (m, 11H, -CH₂CH₃), 0.88 (t, *J* = 6.6 Hz, 3H, -CH₃). Anal. Calcd for C₁₅H₂₁FO₃: C 67.14, H 7.89; Found: C 67.06, H 7.89.

(vi) Synthesis of (R)-4-((benzyloxy)carbonyl)phenyl-2-fluoro-4-(octan-2-yloxy)benzoate (5)

The product A_IF^* (11.25 g, 42mmol), benzyl 4-hydroxybenzoate (8 g, 35mmol), DMAP (0.65 g, 5.3mmol) and DCC (14.5g, 70mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample 5 was a light yellow solid (yield: 87%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.13 (d, *J* = 8.7 Hz, 2H, Ar-H), 8.02 (t, *J* = 9.0 Hz, 1H, Ar-H), 7.45-7.30 (m, 5H, Ar-H), 7.29-7.25 (m, 2H, Ar-H), 6.74 (dd, *J* = 8.7 Hz, 1H, Ar-H), 6.66 (dd, *J* = 8.7 Hz, 1H, Ar-H), 5.37 (s, 1H, -OCH₂Ph), 4.40 (m, 1H, -OCH-), 1.70-1.61 (m, 2H, -CH₂-), 1.41-1.26 (m, 11H, -CH₂CH₃), 0.86 (t, *J* = 6.0 Hz, 3H, -CH₃).

(vii) Synthesis of (R)-4-((2-fluoro-4-(octan-2-yloxy)benzoyl)oxy)benzoic acid (A_{II}F*)

The sample **5** (10g, 20 mmol) and 15% Pd/C (1.5 g) were dissolved in dry THF, then the solution was reacted at room temperature for overnight upon hydrogen system. The mixture was filtrated by diatomaceous followed by THF cleaning and concentrated by a rotary evaporator. The residue was recrystallization by *n*-hexane/DCM, and the product $A_{II}F^*$ was a white solid (yield: 95%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.16 (d, *J* = 8.7 Hz, 2H, Ar-H), 8.03 (t, *J* = 8.0 Hz, 1H, Ar-H), 7.32 (m, 2H, Ar-H), 6.74 (dd, *J* = 9.0 Hz, 1H, Ar-H), 6.68 (dd, *J* = 11.7 Hz, 1H, Ar-H), 4.42 (m, 1H, -OCH-), 1.71-1.60 (m, 2H, -CH₂-), 1.33-1.27 (m, 11H, -CH₂CH₃), 0.86 (t, *J* = 6.3 Hz, 3H, -CH₃). Anal. Calcd for C₂₂H₂₅FO₅: C 68. 03, H 6.49; Found: C 67.78, H 6.44.

(viii) Synthesis of methyl 2-fluoro-4-(heptyloxy)benzoate (6)

The sample **3** (11.05g, 65mmol), K₂CO₃ (27.2g, 197mmol), and KI (5.5g, 33mmol) were dissolved in acetone, then 1-bromoheptane (14g, 78mmol) was slowly added in the solution. The solution reacted at 60°C for overnight, then solution was concentrated by a rotary evaporator. The mixture was extracted by DI water/ EtOAc, then organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/EtOAc = 5:1, v/v), and the sample **6** as a white solid (yield: 94%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.86 (d, *J* = 9.0 Hz, 1H, Ar-H), 6.69 (d, *J* = 8.7 Hz, 1H, Ar-H), 6.61 (d, *J* = 8.7 Hz, 1H, Ar-H), 3.97 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 3.87 (s, 3H, -OCH₃), 1.77 (m, 2H, CH₂-), 1.45-1.20 (m, 8H, -CH₂-), 0.87 (t, *J* = 6.3 Hz, 3H, -CH₃).

(ix) Synthesis of 2-fluoro-4-(heptyloxy)benzoic acid (7)

The sample **6** (9.66g, 36mmol) and KOH (6.06g, 108mmol) were dissolved in MeOH, then the solution was reacted at 90°C for 24 hours. The mixture was concentrated by a rotary evaporator, then HCl aqueous solution was added to until pH=3. The sample **7** was a light white solid (yield: 93%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.78 (d, *J* = 8.7 Hz, 1H, Ar-H), 6.86 (dd, *J* = 8.7 Hz, 1H, Ar-H), 6.80 (dd, *J* = 8.7 Hz, 1H, Ar-H), 4.03 (t, *J* = 6.7 Hz, 2H, -OCH₂-), 1.72 (m, 2H, -CH₂-), 1.38-1.27 (m, 8H, -CH₂-), 0.86 (t, *J* = 6.7 Hz, 3H, -CH₃). Anal. Calcd for C₁₄H₁₉FO₃: C 66.12, H,7.53; Found: C 64.88, H 7.50.

(x) Synthesis of 4-((benzyloxy)carbonyl)phenyl 2-fluoro-4-(heptyloxy)benzoate (8)

The sample 7 (10.68g, 42mmol), benzyl 4-hydroxybenzoate (8 g, 35mmol), DMAP (0.65 g, 5.3mmol) and DCC (14.5g, 70mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **8** was a white solid (yield: 87%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.11 (d, *J* = 8.7 Hz, 2H, Ar-H), 8.01 (t, *J* = 8.4 Hz, 1H, Ar-H), 7.44-7.34 (m, 4H, Ar-H), 7.32-7.22 (m, 2H, Ar-H), 6.74 (mdd, 1H, Ar-H), 6.70 (m, 2H, Ar-H), 5.35 (s, 2H, -CH₂Ph), 4.01 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 1.77 (t, 2H, -CH₂-), 1.50-1.31 (m, 8H, -CH₂-), 1.02 (t, *J* = 6.3 Hz, 3H, -CH₃).

(xi) Synthesis of 4-((2-fluoro-4-(heptyloxy)benzoyl)oxy)benzoic acid (A_{II}F)

The sample **8** (10g, 21.5mmol) and 15% Pd/C (1.11 g) were dissolved in dry THF, then the solution was reacted at room temperature for overnight upon hydrogen system. The mixture was filtrated by diatomaceous followed by THF cleaning and concentrated by a rotary evaporator. The residue was recrystallization by *n*-hexane/DCM, and the product $A_{II}F$ was a white solid (yield: 90%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.17 (d, *J* = 8.7 Hz, 2H, Ar-H), 8.14 (t, *J* = 8.7 Hz, 1H, Ar-H), 7.32 (d, *J* = 8.7 Hz, 2H, Ar-H), 6.77 (m, 1H, Ar-H), 6.68 (m, 1H, Ar-H), 4.00 (t, *J* = 6.6 Hz, 2H, -OCH₂-), 1.86 (t, 2H, -CH₂-), 1.47-1.27 (m, 8H, -CH₂-), 0.86 (t, *J* = 6.5 Hz, 3H, -CH₃). Anal. Calcd for C₂₁H₂₃FO₅: C 67.37, H 6.19; Found: C 67.25, H 6.39.

(xii) Synthesis of (R)-methyl 4-(octan-2-yloxy)benzoate (9)

Benzyl 4-hydroxybenzoate (4.47g, 29.4mmol) and PPh₃ (8.89g, 33.8mmol) were dissolved in dry DCM upon nitrogen system, then (S)-(+)-2-octanol ([α]20/D +9.5°, neat) (4.6g, 35.2mmol) and DIAD (8.9g, 44mmol) were added in the solution at 0°C under ice bath. The solution reacted at room temperature for 12 hours, then mixture was concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **9** was a white solid (yield: 74%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.10 (d, *J* = 8.7 Hz, 2H,Ar-H), 6.87 (d, *J* = 8.7 Hz, 2H, Ar-H), 4.42 (m,1H, -OCH), 3.88 (s, 3H, -OCH₃), 1.71-1.57 (m, 2H, -CH₂-), 1.42-1.25 (m, 11H, -CH₂), 0.88 (t, *J* = 6.0 Hz, 3H, -CH₃).

(xiii) Synthesis of (R)-4-(octan-2-yloxy)benzoic acid (10)

The sample **9** (9.51g, 36 mmol) and KOH (6.06g, 108mmol) were dissolved in MeOH, then the solution was reacted at 90°C for 24 hours. The mixture was concentrated by a rotary evaporator, then HCl aqueous solution was added to until pH=3. The sample **10** was a light white solid (yield: 94%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.06 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.92 (d, *J* = 8.0 Hz, 2H, Ar-H), 4.05 (m, 1H, -OCH), 1.78-1.58 (m, 2H, -CH₂), 1.44-1.26 (m, 11H, -CH₂), 0.90 (t, *J* = 6.0 Hz, 3H, -CH₃) Anal. Calcd for C₁₅H₂₂O₃: C 71.97, H 8.86; Found: C 71.34, H 8.87.

(xiv) Synthesis of (R)-benzyl 4-((4-(octan-2-yloxy)benzoyl)oxy)benzoate (11)

The sample **10** (10.51g, 42mmol), benzyl 4-hydroxybenzoate (8 g, 35mmol), DMAP (0.65 g, 5.3mmol) and DCC (14.5g, 70mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **11** was a white solid (yield: 87%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.14 (m, *J* = 8.7 Hz,4H, Ar-H), 7.44-7.32 (m, 5H, Ar-H), 7.27-7.25 (m, 3H, Ar-H), 6.94 (d, *J* = 8.7 Hz, 2H, Ar-H), 5.35 (s, 2H, -OCH₂-Ph), 4.45 (m, 1H, -OCH), 1.71-1.59 (m, 2H, -CH₂), 1.42-1.25 (m, 11H, -CH₂), 0.88 (t, *J* = 6.0 Hz, 3H, -CH₃).

(xv) Synthesis of (R)-4-((4-(octan-2-yloxy)benzoyl)oxy)benzoic acid (A_{II}*)

The sample **11** (7.4g, 20mmol) and 15% Pd/C (1.11 g) were dissolved in dry THF, then the solution was reacted at room temperature for overnight upon hydrogen system. The mixture was filtrated by diatomaceous followed by THF cleaning and concentrated by a rotary evaporator. The residue was recrystallization by *n*-hexane/DCM, and the product A_{II} * was a white solid (yield: 90%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.22-8.14 (m, 4H, Ar-H), 7.33 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.98 (d, *J* = 8.4 Hz, 2H, Ar-H), 4.52 (m, 1H, -OCH), 1.79-1.60 (m, 2H, -CH₂), 1.39-1.32 (m, 11H, -CH₂), 0.91 (t, *J* = 5.7 Hz, 3H, -CH₃). Anal. Calcd for C₂₂H₂₆O₅: C 71.33, H, 7.07; Found: C 70.96, H 7.11.

Scheme 2. Synthesis of H-accepters T (P_{IV}C₉, P_{III}C₅, P_{III}C₇ and P_{III}C₉).

The benzyl 4-hydroxybenzoate (10g, 65mmol), K₂CO₃ (27.2g, 197mmol), and KI (5.5g, 33mmol) were dissolved in acetone, then 1-bromononane (16.2g, 78mmol) was slowly added in the solution. The solution reacted at 60°C for overnight, then solution was concentrated by a rotary evaporator. The mixture was extracted by DI water/ EtOAc, then organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/EtOAc = 5:1, v/v), and the sample **11** was a white solid (yield: 96%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.86 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.88 (d, *J* = 8.4 Hz, 2H, Ar-H), 4.02 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 3.88 (s, 3H, -OCH₃), 1.71-1.61 (m, 2H, -CH₂-), 1.71-1.29 (m, 6H, -CH₂-), 0.96 (t, *J* = 6.3 Hz, 3H, -CH₃).

(ii) Synthesis of methyl 4-(heptyloxy)benzoate (15)

The benzyl 4-hydroxybenzoate (10g, 65mmol), K_2CO_3 (27.2g, 197mmol), and KI (5.5g, 33mmol) were dissolved in acetone, then 1-bromoheptane (14g, 78mmol) was slowly added in the solution. The solution reacted at 60°C for overnight, then solution was concentrated by a rotary evaporator. The mixture was extracted by DI water/ EtOAc, then organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/EtOAc = 5:1, v/v), and the sample **15** was a white solid (yield: 95%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.97 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.87 (d, *J* = 8.4 Hz, 2H, Ar-H), 4.02 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 3.88 (s, 3H, -OCH₃), 1.71-1.61 (m, 2H, -CH₂-), 1.42-1.25 (m, 8H, -CH₂-), 0.88 (t, *J* = 6.3 Hz, 3H, -CH₃).

(iii) Synthesis of methyl 4-(nonyloxy)benzoate (19)

The benzyl 4-hydroxybenzoate (10g, 65mmol), K₂CO₃ (27.2g, 197mmol), and KI (5.5g, 33mmol) were dissolved in acetone, then 1-bromopentane (11.8g, 78mmol) was slowly added in the solution. The solution reacted at 60°C for overnight, then solution was concentrated by a rotary evaporator. The mixture was extracted by DI water/ EtOAc, then organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/EtOAc = 5:1, v/v), and the sample **19** was a white solid (yield: 95%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.92 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.88 (d, *J* = 8.4 Hz, 2H, Ar-H), 4.02 (m, 2H, -OCH₂-), 3.88 (s, 3H, -OCH₃), 1.71-1.61 (m, 2H, -CH₂-), 1.48-1.15 (m, 12H, -CH₂CH₃), 0.85 (t, *J* = 6.3 Hz, 3H, -CH₃).

(iv) Synthesis of 4-(pentyloxy)benzoic acid (12)

The sample **11** (10g, 45mmol) and KOH (7.56g, 135mmol) were dissolved in MeOH, then the solution was reacted at 90°C for 24 hours. The mixture was concentrated by a rotary evaporator, then HCl aqueous solution was added to until pH=3. The sample **12** was a white solid (yield: 90%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.01 (d, *J* = 8.7 Hz, 2H, Ar-H), 6.98 (d, *J* = 8.7 Hz, 2H, Ar-H), 3.96 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 1.70-1.61 (m, 2H, -CH₂-), 1.51-1.26 (m, 4H, -CH₂-), 0.86 (t, *J* = 6.3 Hz, 3H, -CH₃).

(v) Synthesis of 4-(heptyloxy)benzoic acid (16)

The sample **15** (10g, 40mmol) and KOH (7.56g, 135mmol) were dissolved in MeOH, then the solution was reacted at 90°C for 24 hours. The mixture was concentrated by a rotary evaporator, then HCl aqueous solution was added to until pH=3. The sample **16** was a white solid (yield: 90%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.04 (d, *J* = 8.7 Hz, 2H, Ar-H), 6.91 (d, *J* = 8.7 Hz, 2H, Ar-H), 4.02 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 1.83-1.70 (m, 2H, -CH₂-), 1.46-1.25 (m, 8H, -CH₂-), 0.89 (t, *J* = 6.3 Hz, 3H, -CH₃). Anal. Calcd for C₁₄H₂₀O₃: C 71.57, H 8.70; Found: C 71.19, H 8.55.

The sample **19** (10g, 36mmol) and KOH (7.56g, 135mmol) were dissolved in MeOH, then the solution was reacted at 90°C for 24 hours. The mixture was concentrated by a rotary evaporator, then HCl aqueous solution was added to until pH=3. The sample **20** was a white solid (yield: 92%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.12 (d, *J* = 8.7 Hz, 2H, Ar-H), 6.99 (d, *J* = 8.7 Hz, 2H, Ar-H), 4.07 (s, 2H, -OCH₂-), 1.80-1.71 (m, 2H, -CH₂-), 1.51-1.26 (m, 12H, -CH₂-), 0.86 (t, *J* = 6.6 Hz, 3H, -CH₃).

(vii) Synthesis of benzyl 4-((4-(pentyloxy)benzoyl)oxy)benzoate (13)

The sample **12** (10 g, 48mmol), benzyl 4-hydroxybenzoate (9.14g, 40mmol), DMAP (0.73g, 6mmol) and DCC (16.57g, 80mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **13** was a white solid (yield: 83%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.03 (m, 4H, Ar-H), 7.26 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.19 (m, 5H, Ar-H), 6.94 (d, *J* = 9.0 Hz, 2H, Ar-H), 5.36 (s, 2H, -OCH₂Ph), 3.94 (t, *J* = 6.3 Hz, 2H, -OCH-), 1.70-1.61 (m, 2H, -CH₂-), 1.33-1.29 (m, 4H, -CH₂-), 0.96 (t, *J* = 6.3 Hz, 3H, -CH₃).

(viii) Synthesis of benzyl 4-((4-(heptyloxy)benzoyl)oxy)benzoate (17)

The sample **16** (10 g, 42 mmol), benzyl 4-hydroxybenzoate (9.14g, 40mmol), DMAP (0.73g, 6mmol) and DCC (16.57g, 80mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **17** was a white solid (yield: 87%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.05 (m, 4H, Ar-H), 7.45-7.30 (m, 5H, Ar-H), 7.29-7.25 (m, 2H, Ar-H), 6.94 (d, *J* = 9.0 Hz, 2H, Ar-H) , 5.36 (s, 2H, -OCH₂Ph), 4.10 (t, *J* = 6.3 Hz, 2H, -OCH-), 1.70-1.61 (m, 2H, -CH₂-), 1.41-1.25 (m, 8H, -CH₂-), 0.86 (t, *J* = 6.3 Hz, 3H, -CH₃).

(ix) Synthesis of benzyl 4-((4-(nonyloxy)benzoyl)oxy)benzoate (21)

The sample **20** (10g, 37.8mmol), benzyl 4-hydroxybenzoate (9.14g, 40mmol), DMAP (0.73g, 6mmol) and DCC (16.57g, 80mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **21** was a white solid (yield: 82%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.15 (m, 4H, Ar-H), 7.45-7.31 (m, 5H, Ar-H), 7.32-7.25 (m, 2H, Ar-H), 6.97 (d, *J* = 8.4 Hz, 2H, Ar-H), 5.37 (s, 2H, -OCH₂Ph), 4.10 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 1.73-1.61 (m, 2H, -CH₂-), 1.50-1.25 (m, 12H, -CH₂-), 0.86 (t, *J* = 6.3 Hz, 3H, -CH₃).

(x) Synthesis of 4-((4-(pentyloxy)benzoyl)oxy)benzoic acid (14)

The sample **13** (10g, 20 mmol) and 15% Pd/C (1.5 g) were dissolved in dry THF, then the solution was reacted at room temperature for overnight upon hydrogen system. The mixture was filtrated by diatomaceous followed by THF cleaning and concentrated by a rotary evaporator. The residue was recrystallization by *n*-hexane/DCM, and the sample **14** was a white solid (yield: 95%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.20 (d, *J* = 8.4 Hz, 2H, Ar-H), 8.04 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.35-7.15 (m, 2H, Ar-H), 6.90 (d, *J* = 8.7 Hz, 2H, Ar-H), 3.94 (t, *J* = 6.6 Hz, 2H, -OCH-), 1.70-1.61 (m, 2H, -CH₂-), 1.33-1.25 (m, 4H, -CH₂-), 0.86 (t, *J* = 6.6 Hz, 3H, -CH₃).

S10

S11

(xi) Synthesis of 4-(4-(heptyloxy)benzoyloxy)benzoic acid (18)

The sample **17** (10 g, 21mmol) and 15% Pd/C (1.5 g) were dissolved in dry THF, then the solution was reacted at room temperature for overnight upon hydrogen system. The mixture was filtrated by diatomaceous followed by THF cleaning and concentrated by a rotary evaporator. The residue was recrystallization by *n*-hexane/DCM, and the sample **18** was a white solid (yield: 95%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.14 (m, 4H, Ar-H), 7.32-7.25 (m, 2H, Ar-H), 6.94 (d, *J* = 8.7 Hz, 2H, Ar-H), 4.04 (t, *J* = 6.6 Hz, 2H, -OCH-), 1.81-1.76 (m, 2H, -CH₂-), 1.46-1.24 (m, 8H, -CH₂-), 0.88 (t, *J* = 6.6 Hz, 3H, -CH₃). Anal. Calcd for C₂₁H₂₄O₅: C 70.77, H 6.79; Found: C 70.61, H 6.94.

(xii) Synthesis of 4-((4-(nonyloxy)benzoyl)oxy)benzoic acid (22)

The sample **21** (10 g, 22mmol) and 15% Pd/C (1.5 g) were dissolved in dry THF, then the solution was reacted at room temperature for overnight upon hydrogen system. The mixture was filtrated by diatomaceous followed by THF cleaning and concentrated by a rotary evaporator. The residue was recrystallization by *n*-hexane/DCM, and the sample **22** was a white solid (yield: 96%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.05 (m, 4H, Ar-H), 7.39-7.15 (m, 2H, Ar-H), 6.90 (d, *J* = 8.7 Hz, 2H, Ar-H), 4.08 (t, *J* = 6.6 Hz, 2H, -OCH-), 1.70-1.61 (m, 2H, -CH₂-), 1.41-1.25 (m, 12H, -CH₂-), 0.85 (t, *J* = 6.6 Hz, 3H, -CH₃).

(xv) Synthesis of pyridin-3-yl 4-((4-(nonyloxy)benzoyl)oxy)benzoate (P_{III}C₉)

The sample **14** (4.58g, 11.9mmol), 3-Hydroxypyridine(1.13 g, 11.9mmol), DMAP (0.18g, 1.5mmol) and DCC (4.11g, 19.8mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the product $P_{III}C_5$ was a white solid (yield: 69%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.56 (m, 2H, Ar-H), 8.29 (d, *J* = 9.0 Hz, 2H, Ar-H), 8.15 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.64 (m, 1H, Ar-H), 7.40-7.25 (m, 3H, Ar-H), 6.98 (d, *J* = 9.0 Hz, 2H, Ar-H), 4.05 (t, *J* = 6.5 Hz, 2H, -OCH₂-), 1.85-1.78 (m, 2H, -CH₂-), 1.548-1.22 (m, 12H, -CH₂-), 0.90 (t, *J* = 6.3 Hz, 3H, -CH₃). Anal. Calcd for C₂₈H₃₁NO₅: C 72.86, H 6.77, N 3.03, Found: C 72.85, H 6.86, N 3.22.

(xiv) Synthesis of pyridin-3-yl 4-((4-(heptyloxy)benzoyl)oxy)benzoate (P_{III}C₇)

The sample **18** (4.24g, 11.9mmol), 3-Hydroxypyridine(1.13 g, 11.9mmol), DMAP (0.18g, 1.5mmol) and DCC (4.11g, 19.8mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the product $P_{III}C_5$ was a white solid (yield: 77%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.57 (m, 2H, Ar-H), 8.28 (d, *J* = 9.0 Hz, 2H, Ar-H), 8.16 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.64 (m, 1H, Ar-H), 7.40-7.26 (m, 3H, Ar-H), 6.98 (d, *J* = 8.7 Hz, 2H, Ar-H), 4.06 (t, *J* = 6.6 Hz, 2H, -OCH₂-), 1.90-1.82 (m, 2H, -CH₂-), 1.48-1.33 (m, 8H, -CH₂-), 0.91 (t, *J* = 7.0 Hz, 3H, -CH₃). Anal. Calcd for C₂₆H₂₇NO₅: C 72.04, H 6.28, N 3.23, Found: C 71.96, H 6.46, N 3.52.

S12

(xiii) Synthesis of pyridin-3-yl 4-((4-(pentyloxy)benzoyl)oxy)benzoate (P_{III}C₅)

The sample **22** (3.9g, 11.9mmol), 3-Hydroxypyridine(1.13 g, 11.9mmol), DMAP (0.18g, 1.5mmol) and DCC (4.11g, 19.8mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the product $P_{III}C_5$ was a white solid (yield: 82%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.55 (m, 2H, Ar-H), 8.26 (d, *J* = 9.0 Hz, 2H, Ar-H), 8.15 (d, *J* = 9.0Hz, 2H, Ar-H), 7.62 (m, 1H, Ar-H), 7.40-7.26 (m, 3H, Ar-H), 6.96 (d, *J* = 9.0 Hz, 2H, Ar-H), 4.03 (t, *J* = 6.5 Hz, 2H, -OCH₂-), 1.77-1.68 (m, 2H, -CH₂-), 1.48-1.33 (m, 4H, -CH₂-), 0.93 (t, *J* = 7.1 Hz, 3H, -CH₃). Anal. Calcd for C₂₄H₂₃NO₅: C 71.10, H 5.72, N 3.45; Found: C 71.07, H 6.11, N 3.62.

(xvi) Synthesis of 4-((3-(benzyloxy)phenoxy)carbonyl)phenyl 4-(nonyloxy)benzoate (23)

The sample **14** (7.68g, 20mmol), benzyl 3-hydroxybenzoate (5g, 25mmol), DMAP (0.385g, 3.15mmol) and DCC (8.654g, 41.67mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the sample **23** was a white solid (yield: 84%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.21 (d, *J* = 8.4 Hz, 2H, Ar-H), 8.03 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.30-7.22 (m, 8H, Ar-H), 6.83-6.66 (m, 5H, Ar-H), 5.12 (s, 2H, -OCH₂Ph), 3.94 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 1.69 (m, 2H, -CH₂-), 1.43-1.26 (m, 12H, -CH₂-), 0.96 (t, *J* = 6.3 Hz, 3H, -CH₃).

(xvii) Synthesis of 4-((3-hydroxyphenoxy)carbonyl)phenyl 4-(nonyloxy)benzoate (24)

The sample **23** (10g, 17.7mmol) and 15% Pd/C (1.5 g) were dissolved in dry THF, then the solution was reacted at room temperature for overnight upon hydrogen system. The mixture was filtrated by diatomaceous followed by THF cleaning and concentrated by a rotary evaporator. The residue was recrystallization by *n*-hexane/DCM, and the sample **24** was a white solid (yield: 89%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.21 (d, *J* = 8.7 Hz, 2H, Ar-H), 8.03 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.30-7.21 (m, 5H, Ar-H), 6.92-6.62 (m, 3H, Ar-H), 5.00 (s, 1H, -OCH₂Ph), 3.94 (t, *J* = 6.6 Hz, 2H, -OCH₂-), 1.69 (m, 2H, -CH₂-), 1.44-1.26 (m, 4H, -CH₂-), 0.96 (t, *J* = 6.6 Hz, 3H, -CH₃).

(xviii) Synthesis of 3-((4-((4-(nonyloxy)benzoyl)oxy)benzoyl)oxy)phenyl isonicotinate (P_{IV}C₉)

The sample **24** (5.67g, 11.9mmol), isonicotinic acid (1.46g, 11.9mmol), DMAP (0.18g, 1.5mmol) and DCC (4.11g, 19.8mmol) were dissolved in dry DCM upon nitrogen system, then the solution was reacted at room temperature for 16 hours. The mixture was extracted by DI water/DCM, then the organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the product $P_{Iv}C_9$ was a white solid (yield: 72%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.86 (m, 2H, Ar-H), 8.26 (d, *J* = 8.7 Hz, 2H, Ar-H), 8.13 (d, *J* = 9.0 Hz, 2H, Ar-H), 8.00 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.64 (m, 1H, Ar-H), 7.37-7.34 (m, 2H, Ar-H), 7.24-7.19 (m, 3H, Ar-H), 6.97 (d, *J* = 9.3 Hz, 2H, Ar-H), 4.03 (t, *J* = 6.5 Hz, 2H, -OCH₂-), 1.42-1.20 (m, 14H, -CH₂-), 0.87 (t, *J* = 6.3 Hz, 3H, -CH₃). Anal. Calcd for C₃₅H₃₅NO₇: C 72.27, H 6.07, N 2.41, Found: C 71.64, H 6.32, N 2.56.

Scheme S3. Synthesis of covalent-bonded bent-core molecule P_{III}C₉A_{II}F*.

Synthesis of (R)-4-((4-((4-(nonyloxy)benzoyl)oxy)benzoyl)oxy)phenoxy)carbonyl)phenyl 2-fluoro-4-(octan-2-yloxy)benzoate ($P_{III}C_9A_{II}F^*$) The sample 24 (5.67 g, 11.9 mmol), product $A_{II}F^*$ (4.62g, 11.9 mmol), DMAP (0.18g, 1.5 mmol) and DCC (4.11g, 19.8 mmol) were dissolved in dry DCM, Then the solution reacted at room temperature for 16 hours upon nitrogen system. The mixture was extracted by deionized water/DCM, then organic phase was dried by MgSO₄ and concentrated by a rotary evaporator. The residue was purified by column chromatography on silica (*n*-hexane/DCM = 5:1, v/v), and the product $P_{III}C_9A_{II}F^*$ as a white solid (yield: 80%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.25 (d, *J* = 8.4 Hz, 4H, Ar-H), 8.13 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.99 (t, *J* = 8.7 Hz, 1H, Ar-H), 7.46 (t, *J* = 8.4 Hz, 1H, Ar-H), 7.36 (d, *J* = 8.4 Hz, 4H, Ar-H), 7.18 (m, 3H, Ar-H), 7.13 (d, *J* = 8.7 Hz, 2H, Ar-H), 6.75-6.64 (m, 2H, Ar-H), 4.43 (m, 1H, -OCH-), 4.03 (t, *J* = 6.5 Hz, 2H, -OCH₂-), 1.49-1.23 (m, 26H, -CH₂-), 0.87 (m, 6H, -CH₃). Anal. Calcd for C₅₁H₅₅FO₁₀: C 72.32, H 6.55, Found: C 73.19, H 6.97.

Additional information

The additional information (phase transition temperatures $^{\circ}$ C) of H-bonded bent-core complexes $P_{IV}C_9/A_IF^*$ was compared with the H-bonded bent-core complex $P_{III}C_9/A_IF^*$ with different H-donors A_IF^* and $A_{II}F^*$, respectively.

Fig. S1 Binary phase diagram of H-bonded bent-core complexes $P_{IV}C_9/A_IF^*$ with various molar ratios of H-donor A_IF^* . (N*: chiral nematic phase; K: crystalline phase.)

The additional information (phase transition temperatures °C) of H-bonded bent-core complexes $P_{III}C_9/A_{II}^*$ was compared with the H-bonded bent-core complex $P_{III}C_9/A_{II}F^*$ with different H-donors A_{II}^* and $A_{II}F^*$, respectively.

Fig. S2 Binary phase diagram of H-bonded bent-core complexes $P_{III}C_9/A_{II}^*$ with various molar ratios of H-donor A_{II}^* . (N*: chiral nematic phase; K: crystalline phase.)

Fig. S3 ¹³C NMR spectrum of $P_{III}C_9A_{II}F^*$.

Fig. S4 13 C NMR spectrum of P_{III}C9.

S16

Fig. S5 ¹³C NMR spectrum of A_{II}F.

Fig. S6 13 C NMR spectrum of A_{II}^* .

