Supporting Information

Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: mechanisms study

Quanquan Yang ^a, Xiaogang Li ^a, Guangcai Chen ^{a*}, Jianfeng Zhang ^a, Baoshan Xing

b

^a Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang,

Zhejiang 311400, China

^b Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA

01003, United States

* Corresponding author.

Phone: 86-571-63105079

Fax: 86-571-63141304

E-mail addresses: guangcaichen@sohu.com (Chen GC).

There are 9 figures and 3 tables.

There are 14 pages totlly.

Figure and tables

Fig. S1. Adsorption kinetics of HA onto P-MWCNT (\Box), C-MWCNT (\circ), and H-MWCNT (Δ).

Fig. S2 The effect of membrane pore size on measurement of solubility of SMZ. $C_{s0.22}$ and $C_{s0.45}$ are the solubility of SMZ filtered by 0.22 μm and 0.45 μm , respectively.

Fig. S3. Ultraviolet-visible absorbance spectra of HA with concentrations from 10 to $60 \text{ mg } \text{L}^{-1}$ at 190–900 nm. The solid line represents the HA concentration before adsorption and the dotted line shows the HA concentration at adsorption equilibrium.

Fig. S4. HA concentration-absorbance calibration curve.

Fig. S5. µ-FTIR spectra of P-MWCNT (a), C-MWCNT (b), and H-MWCNT (c).

Fig. S6. Zeta potential of P-MWCNT (\Box), C-MWCNT (\circ), and H-MWCNT (Δ) as a function of pH.

Fig. S7. Effect of HA on SMZ adsorption. (a) Concentration of HA as affected by Ca^{2+} (0–100 mM). The initial concentrations of HA were 10 and 30 mg/L. C_{HA} is the concentration of HA at which HA precipitation was caused by Ca^{2+} and separated using a 0.45 µm hydrophilic membrane filter. (b) Recovery percentage of SMZ. The HA was precipitated by Ca^{2+} and was separated immediately using a 0.45 µm hydrophilic membrane filter.

Fig. S8. Relative solubility based on a background solution (value = 1) of SMZ in the presence of HA.

Fig. S9. The species distribution for SMZ at different solution pH.

	Outer	Inner	Carbon	Oxygen	Surface	Mesopore	Micropore
Name	diameter ^b	diameter ^b	content ^c	content ^c	area d	volume ^d	volume ^d
	(nm)	(nm)	(%)	(%)	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$
P-MWCNTs	10-20	5-10	99	0.85	167	0.619	0.016
C-	10.20	5-10	97	2.16	178	0.629	0.015
MWCNTs	10-20						
H-	10-20	5-10	92	7.07	185	0.756	0.024
MWCNTs							

Table S1 Basic MWCNTs structural properties^a.

^a The data are herein presented in Table. S1 were firstly published in Chen et al., 2009¹.

^b The diameters were determined by transmission electron microscope (TEM);

^c The carbon and oxygen contents were determined by X-ray photoelectron spectroscopy (XPS);

^d The surface area and pore volume were determined by nitrogen gas adsorption and desorption at 77k with ASAP2000 (Micromeritics Instrument Corporation).

Table S2 Elemental compositions and ¹³C NMR estimates of carbon distributions for HA.

sample -	Elemental composition			(%) ^a	A 1 (0/) a	$(\mathbf{O} \mid \mathbf{N}) / \mathbf{C}$ h	Integration of NMR results (%)		
	С	Н	0	Ν	Ash(%) ª	$(0+N)/C^{-1}$	Aliphatic C	Aromatic C	Aliphaticity ^c
AHA	57.07	3.25	36.85	1.47	1.36	0.50	22.3	53.7	0.42

^a Mass-based percentages. The C, H and N were determined by CHN Elemental Analyzer (EA 1112, Thermo Finnigan, Italia), the ash were determined using combustion the processed ash at 750 °C for 4 hour, and the oxygen content were calculated by mass difference [Oxygen content = 100 % -(C content +H content +N content)].

^b Molar-based ratios.

^c Aliphaticity was calculated as aliphatic C (0-109 ppm)/aromatic C (109-163 ppm) ratio ². The major structural carbons were measured using a 300M Hz NMR spectrometer (Bruker AV300, Switzerland).

Tuble se structural and physicoenemical properties of sumanemizine.							
Compound	CAS number ^a	Chemical structure ^a	Molecular weight (g·mol ⁻	Water solubility (g·L ⁻¹) ^b	pKa°		
sulfamethazine	57-68-1		278.33	Fig. 5(a)	2.28 7.42		

 Table S3 Structural and physicochemical properties of sulfamethazine.

^a from chemBlink Database of Chemicals from Around the World <u>http://www.chemblink.com/products/57-68-1.htm</u>

^b The water solubility of SMZ were determined at temperature 298 K.

c Reference from ³⁻⁵.

Literature cited

1 G.C. Chen, X.Q. Shan, Y. Zhou, X. Shen, H. Huang, S. Khan, J. Hazard. Mater., 2009, 169, 912.

- 2 D. Zhang, B. Pan, R.L. Cook, B. Xing, Environ. Pollut., 2015, 196, 292.
- 3 C. Lin, C. Chang, W. Lin, J. Chromatogr. A. 1997, 768, 105.
- 4 Z. Qiang, C. Adams, Water Res., 2004, 38, 2874.
- 5 X. Guo, C. Yang, Z. Dang, Q. Zhang, Y. Li, Q. Meng, Chem. Eng. J., 2013, 223, 59.