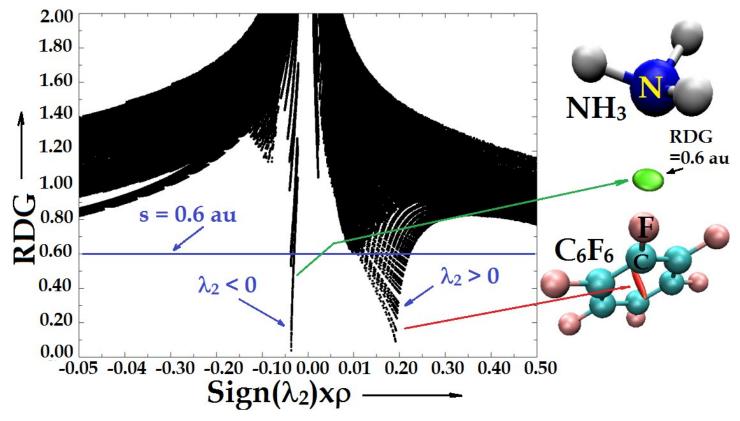
Can an entirely negative fluorine in a molecule, viz. perfluorobenzene, interact

attractively with the entirely negative site(s) on another molecule(s)? Like

liking like!

Arpita Varadwaj,^a Pradeep R. Varadwaj,^{1,b} Bih-Yaw Jin^a


^a Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan

^b Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo,

Bunkyo-ku, Japan 113-8656

Supplementary Information

Fig. S1: RDG vs. Sign(λ_2)× ρ (left) and RDG = 0.6 a.u. isosurface (right) NCI graphical plots for H₃N…FC₆F₅. The spikes in the $\lambda_2 < 0$ and $\lambda_2 > 0$ regions represent to the bonded (attractive) and non-bonded (repulsive) interactions, respectively. The respective s = 0.6 a.u. RDG isosurfaces painted in green and red are depicted in Fig. 2 (see the ball and stick models). (Also, see Fig. 1 for conformational details, and that the dimer lableing in Fig. 1 is in consistent with that shown in Fig. 2 for QTAIM and RDG based molecular and RDG plots, respectively).

¹ Corresponding Author's Email Addresses: pradeep@t.okayama-u.ac.jp, pradeep@tcl.t.u-tokyo.ac.jp

Fig. S2: RDG vs. Sign(λ_2)× ρ plot for H₂O···FC₆F₅ a), H₂O···FC₆F₅ b), H₃CF···FC₆F₅ c), H₃CF···FC₆F₅ d), HF···FC₆F₅ e) and HF···FC₆F₅ f) (values in a.u.). The spikes in the $\lambda_2 < 0$ and $\lambda_2 > 0$ regions represent to the bonded (attractive) and non-bonded (repulsive) interactions, respectively. The respective s = 0.6 a.u. RDG isosurfaces painted in green and red are depicted in Fig. 2 (see the ball and stick models). (Also, see Fig. 1 for conformational details, and that the dimer lableing in Fig. 1 is in consistent with that shown in Fig. 2 for QTAIM and RDG based molecular and RDG plots, respectively).

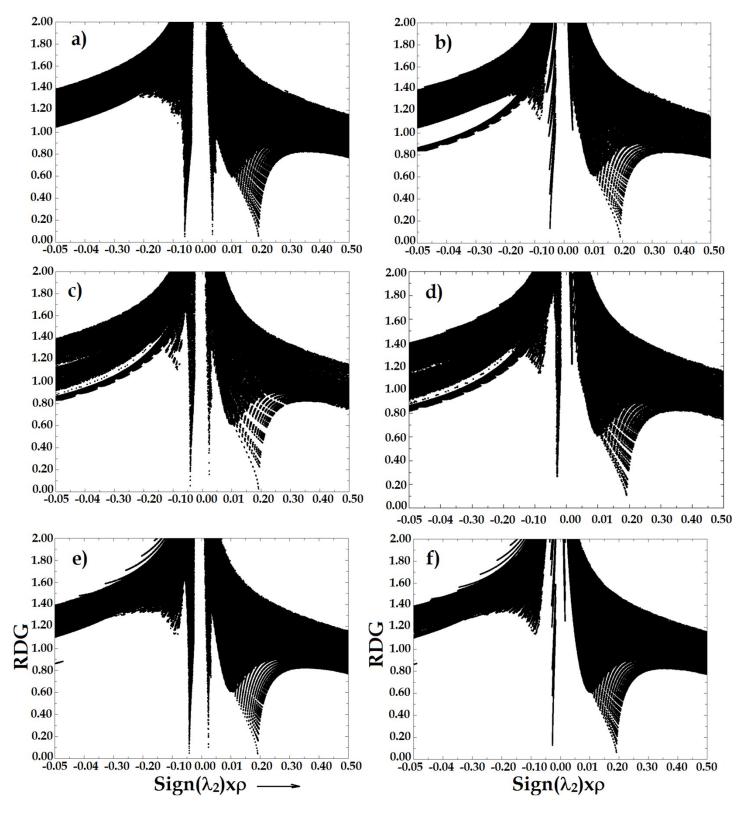
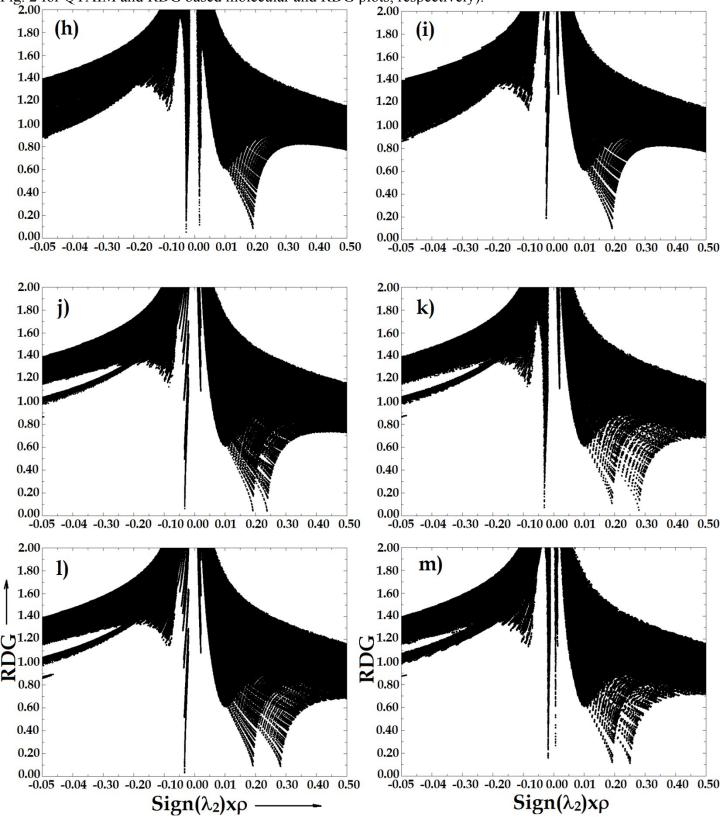



Fig. S3: RDG vs. Sign(λ_2)× ρ plot for H₂CO···FC₆F₅ h), H₂CO···FC₆F₅ i), C₅F₅N···FC₆F₅ j), C₄F₄N₂···FC₆F₅ k), C₄F₄N₂···FC₆F₅ l), and (CF)₄N₂···FC₆F₅ m) (values in a.u.). The spikes in the $\lambda_2 < 0$ and $\lambda_2 > 0$ regions represent to the bonded (attractive) and non-bonded (repulsive) interactions, respectively. The respective s = 0.6 a.u. RDG isosurfaces painted in green and red are depicted in Fig. 2 (see the ball and stick models). (Also, see Fig. 1 for conformational details, and that the dimer lableing in Fig. 1 is in consistent with that shown in Fig. 2 for QTAIM and RDG based molecular and RDG plots, respectively).

