Oxidative degradation of poly(3-hydroxybutyrate). The new method of synthesis the malic acid copolymers

Michał Michalak, Michał Kwiecień, Michał Kawalec, Piotr Kurcok*

Centre of Polymer and Carbon Materials, Polish Academy of Sciences

34, M. Curie-Sklodowska St., 41-819 Zabrze, Poland

* Corresponding Author Tel.: +48 32 2716077 ext. 227; Fax: +48 32 2712969; E-mail:

piotr.kurcok@cmpw-pan.edu.pl

Fig. S1. The comparison of ¹H NMR spectra of product of PHB oxidation with O_3/O_2 mixture (140 °C, 5h), before (a) and after (b) addition of trichloroacetyl isocyanate.

Fig. S2. The ¹³C NMR spectrum of product of PHB oxidation with O_3/O_2 mixture (140 °C, 5h).

Fig S3. The ESI-MS spectrum of PHB oxidation products after 5h exposure on O_3/O_2 mixture at 140 °C; a) full spectrum, b) representative fragment: m/z 500-600, the sequence series correlate with proposed structures presented in Table 2.

Fig S4. The ESI-MS² spectrum of ion m/z 533.2 (negative ion mode) with theoretical fragmentation for oligomer with α -3HB, ω -3HB end groups and four 3HB units.

Fig. S5. The ESI-MS² spectrum of ion m/z 563.1 (negative ion mode) and proposed structures of oligomer with α -3HB end groups, four 3HB units and one MA unit.

Fig. S6. The ESI-MS² spectrum of ion m/z 593.1 (negative ion mode) and proposed structures of oligomer with α -3HB end groups, three 3HB units and two MA units.

Fig. S7. The ESI-MS² spectrum of ion m/z 347.1 (negative ion mode) corresponding to sequence II and III (identical mass of structures) and proposed structures of oligomer with: α -3HB, ω -LA end groups, and two 3HB (sequence II) and α -mOx end group and three 3HB units (sequence III); both structures without 3-malic acid units

Fig. S8. The original ESI-MS² spectrum of ion with m/z 579.2 (negative ion mode) (sequence II and III)

Fig. S9. The ESI-MS² spectrum of ion m/z 419.2 (negative ion mode) (sequence IV) and proposed structures of oligomer with α -mOx, ω -LA end group and three 3HB units.

Fig. S10. The ESI-MS² spectrum of ion m/z 521.1 (negative ion mode) (sequence V) and proposed structures of oligomer with α -AcAc, ω -LA end groups consisted of three MA units.

Fig S11. Changes in the ¹H NMR spectrum of PHB monooxalate ($M_{n SEC}$ = 1600) during the thermal decomposition study at 140 °C in inert atmosphere; ("croto" – indicate the signals corresponding to protons ascribed to crotonate end group).

Fig. S1. The comparison of ¹H NMR spectra of product of PHB oxidation with O₃/O₂ mixture (140 °C, 5h), before (a) and after (b) addition of trichloroacetyl isocyanate.

Fig. S2. The ¹³C NMR spectrum of product of PHB oxidation with O_3/O_2 mixture (140 °C, 5h).

Fig S3. The ESI-MS spectrum of nPHB oxidation products after 5h exposure on O_3/O_2 mixture at 140°C; a) full spectrum, b) representative fragment: m/z 500-600, the sequence series correlate with proposed structures presented in Table 2.

Fig S4. The ESI-MS² spectrum of ion m/z 533.2 (negative ion mode) with theoretical fragmentation for oligomer with α -3HB, ω -3HB end groups and four 3HB units.

Fig. S5. The ESI-MS² spectrum of ion m/z 563.1 (negative ion mode) and proposed structures of oligomer with α -3HB end groups, four 3HB units and one MA unit.

Fig. S6. The ESI-MS² spectrum of ion m/z 593.1 (negative ion mode) and proposed structures of oligomer with α -3HB end groups, three 3HB units and two MA units.

Fig. S7. The ESI-MS² spectrum of ion m/z 347.1 (negative ion mode) corresponding to sequence II and III (identical mass of structures) and proposed structures of oligomer with: α -3HB, ω -LA end groups, and two 3HB (sequence II) and α -mOx end group and three 3HB units (sequence III); both structures without 3-malic acid units

Fig. S8. The original ESI-MS² spectrum of ion m/z 579.2 (negative ion mode) (sequence II and III)

Fig. S9. The ESI-MS² spectrum of ion m/z 419.2 (negative ion mode) (sequence IV) and proposed structures of oligomer with α -mOx, ω -LA end group and three 3HB units.

Fig. S10. The ESI-MS² spectrum of ion m/z 521.1 (negative ion mode) (sequence V) and proposed structures of oligomer with α -AcAc, ω -LA end groups consisted of three MA units.

Fig S11. Changes in the ¹H NMR spectrum of PHB monooxalate ($M_n _{SEC}$ = 1600) during the thermal decomposition study at 140 °C in inert atmosphere; ("croto" – indicate the signals corresponding to protons ascribed to crotonate end group).