Supporting Information

Diversity oriented synthesis of β -carbolinone and indolo-pyrazinone analogues based on an Ugi four component reaction and subsequent cyclisation of the resulting indole intermediate

Pooja Purohit,^aAnand Kumar Pandey,^a Brijesh Kumar,^band Prem M. S. Chauhan*^a

^aMedicinal and Process Chemistry Division, ^bSophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India *Corresponding Author: Phone No: 0522-2771940, Extn: 4659, 4660, Fax: 91-522-2771941; Email: Premsc58@hotmail.com, prem_chauhan_2000@yahoo.com

Contents:	Page No.
1. Synthesis of N-alkyl indole-2-carboxylic acid precursors	S2
2. Table 1.One pot, two-Step Synthesis of β -carbolinones (9a-ab)	
and pyrazinones (10a-ab) derivative	S2-S8
3. Spectra of compound (¹ H NMR and ¹³ C NMR)	S9-S74
4. Note for deuterated solvents peaks	S75

Table 1: One pot, two-Step Synthesis of β -carbolinones (9a-9ab) and pyrazinones (10a-10ab)derivative^{*a*}.

R₂= tert-butyl, n-pentyl, 1,1,3,3 tetra methyl butyl, 4-methoxy phenyl, cyclohexyl

		Cyclised product	
entr y	Starting material	Yield% ^b	
·		9	10

S6

^{*a*} Reaction conditions: step 1: indole 2-carboxylic acid (1) (1 mmol), aryl or alkyl aldehyde (**6a-p**) (1 mmol), aminoacetaldehyde dimethyl acetal (7) (1.1 mmol), alkyl or aryl isocyanide (**3a-e**) (1.1 mmol) in 3 mL solvent at rt (35 °C). Step 2: substrate Ugi adducts **8a-8ab** (1 mmol), TFA (1 equiv.), CH₃CN (2 mL), reaction time (20-30 min.), rt (35 °C), ^{*b*} Isolated yield.^{*c*} Inseparable from reaction mixture.

Figure 1. ¹H and ¹³C spectra of compound 9a

Figure 2. ¹H and ¹³C spectra of compound 10a

Figure 3. ¹H and ¹³C spectra of compound 9b

Figure 4. ¹H and ¹³C spectra of compound 10b

Figure 5. 1 H and 13 C spectra of compound 9c

Figure 6. 1 H and 13 C spectra of compound 10c

Figure 7. ¹H and ¹³C spectra of compound 9d

Figure 8. 1 H and 13 C spectra of compound 10d

Figure 9. ¹H and ¹³C spectra of compound 9e

Figure 10. 1 H and 13 C spectra of compound 10e

Figure 11. ¹H and ¹³C spectra of compound 9f

Figure 12. ¹H and ¹³C spectra of compound 10f

Figure 13. ¹H and ¹³C spectra of compound 9g

Figure 14. ¹H and ¹³C spectra of compound 10g

Figure 15. ¹H and ¹³C spectra of compound 9h

Figure 16. ¹H and ¹³C spectra of compound 10h

Figure 17. ¹H and ¹³C spectra of compound 9i

Figure 18. ¹H and ¹³C spectra of compound 10i

Figure 19. ¹H and ¹³C spectra of compound 9j

Figure 20. ¹H and ¹³C spectra of compound 10j

Figure 21. ¹H and ¹³C spectra of compound 9k

Figure 22. ¹H and ¹³C spectra of compound 10k

Figure 23. ¹H and ¹³C spectra of compound 91

Figure 24. ¹H and ¹³C spectra of compound 10m

Figure 25. ¹H and ¹³C spectra of compound 9n

Figure 26. ¹H and ¹³C spectra of compound 10n

Figure 27. ¹H and ¹³C spectra of compound 90

Figure 28. ¹H and ¹³C spectra of compound 10o

Figure 29. ¹H and ¹³C spectra of compound 9p

Figure 30. ¹H and ¹³C spectra of compound 10p

Figure 31. ¹H and ¹³C spectra of compound 9q

Figure 32. ¹H and ¹³C spectra of compound 10q

Figure 33. ¹H and ¹³C spectra of compound 9r

Figure 34. ¹H and ¹³C spectra of compound 10r

Figure 35. ¹H and ¹³C spectra of compound 9s

Figure 36. ¹H and ¹³C spectra of compound 10s

Figure 37. ¹H and ¹³C spectra of compound 9t

Figure 38. ¹H and ¹³C spectra of compound 10t

Figure 39. ¹H and ¹³C spectra of compound 9u

Figure 40. 1 H and 13 C spectra of compound 10u

Figure 41. ¹H and ¹³C spectra of compound 9v

Figure 42. ¹H and ¹³C spectra of compound 10v

Figure 43. ¹H and ¹³C spectra of compound 9w

Figure 44. ¹H spectra of compound 10w

Figure 45. ¹H and ¹³C spectra of compound 9x

Figure 46. 1 H and 13 C spectra of compound 10x

Figure 47. ¹H and ¹³C spectra of compound 9y

Figure 48. ¹H and ¹³C spectra of compound 10y

Figure 49. ¹H and ¹³C spectra of compound 9z

Figure 50. ¹H and ¹³C spectra of compound 10z

Figure 51. ¹H and ¹³C spectra of compound 9aa

Figure 52. ¹H and ¹³C spectra of compound 10aa

Figure 53. ¹H and ¹³C spectra of compound 9ab

Figure 54. ¹H and ¹³C spectra of compound 10ab

Figure 55. ¹H and ¹³C spectra of compound 18a

Figure 56. ¹H and ¹³C spectra of compound 18b

Figure 57. ¹H and ¹³C spectra of compound 18c

Figure 58. ¹H and ¹³C spectra of compound 18d

Figure 59. ¹H and ¹³C spectra of compound 18e

Figure 60. ¹H and ¹³C spectra of compound 18f

Figure 61. ¹H and ¹³C spectra of compound 18g

Figure 62. ¹H and ¹³C spectra of compound 18h

Figure 63. ¹H and ¹³C spectra of compound 18i

Figure 64. ¹H and ¹³C spectra of compound 18j

Figure 65. ¹H and ¹³C spectra of compound 18k

Figure 66. ¹H and ¹³C spectra of compound 18I

Note: The signal of deuterated solvent CDCl₃ at δ 7.25-7.29 (ppm), DMSO-*d*₆ at δ 2.48-2.51 (ppm) in respective ¹H-NMR spectrum and at δ 77.15-77.32 (ppm) for CDCl₃, δ 39.45-39.55 (ppm) for DMSO-*d*₆ in respective ¹³C-NMR spectrum were observed.