Novel In-Capillary Polymeric Monoliths Arising from Glycerol Carbonate Methacrylate for Flow-Through Catalytic and Chromatographic Applications

Romain Poupart, Nour El Houda Djerir, Deena Chellapermal, Mohamed Guerrouache, Benjamin Carbonnier,* Benjamin Le Droumaguet*

1. Materials and Methods

1.1. Experimental:

Glycerol carbonate methacrylate (GCMA) was supplied by Specific Polymers. Ethylene glycol dimethacrylate (EGDMA, 98%), 3-(Trimethoxysilyl)propyl methacrylate (γ -MAPS, 98%), Sodium borohydride (NaBH₄, \geq 98%), Sodium hydroxide (NaOH, 1 M), Hydrochloric acid (HCl, 0.1 M for HPCE), 2,2-Dimethoxy-2-phenylacetophenone (DMPA, 99%), Toluene (anhydrous, 99.8%), 1-Dodecanol (\geq 98%) and 4-Mercaptobutyric acid were purchased from Sigma Aldrich. 2,2'-Azobisisobutyronitrile (AIBN, 98%) was obtained from Acros Organics. 4-Nitrophenol (*p*-nitrophenol, 99%), Potassium tetrachloroplatinate (K₂PtCl₄, 99,9% metal basis), 1-Octanethiol (98%) and Allylamine (98%+) were purchased from Alfa Aesar. Acetone, HPLC grade Acetonitrile (ACN) and Ethanol absolute (anhydrous) were supplied by Carlo Erba. n-Nonane comes from VWR Chemicals. All reagents were used without further purification. 18.2 M Ω deionized water was filtered through a Milli-Q Plus purification pack. Fused silica capillaries with a UV-transparent external coating (100 µm I.D.) were obtained from Polymicro Technologies.

1.2. Instrumentation:

An HPLC pump (Shimadzu LC-10ATVP) was used to flush monolithic columns with 2-nitrophenol solutions along with mobile phase. Spectrolinker XL-1500 UV Crosslinker (Spectronics Corporation) equipped with eight lamps ($8 \times 15W$, 365 nm) was used to photoinitiate the polymerization. UV-Vis spectra were recorded on a Cary 60 UV-Vis Spectrophotometer from Agilent Technologies. Chemical Structure of the monoliths was investigated using a Raman apparatus XPlora One from Horiba Jobin Yvon equipped with a

laser at 638 nm. Samples were investigated in different places to control the homogeneity. The acquisition time was fixed at 1 min. Scanning Electron Microscopy (SEM) investigations of the materials were performed with a MERLIN microscope from Zeiss equipped with InLens, EBSD and SE2 detectors using a low accelerating tension (2-3 kV) with a diaphragm aperture of 30 μ m. Prior to analyses, the samples were coated with a 4-nm layer of palladium/platinum alloy in a Cressington 208 HR sputter-coater. All chromatographic experiments were carried out using a Dionex Ultimate 3000 HPLC RSLC nanosystem (Sunnyvale, CA, USA) equipped with a 10 nL In-line split loop manual injector and a Dionex VWD 3400 RS detection system operating at a fixed wavelength $\lambda = 214$ nm.

1.3. Synthesis of the GCMA-based functionalized monolithic capillaries

The synthesis of the (GCMA-*co*-EGDMA) monolithic columns relies on a three-step process involving *(i)* the synthesis of the porous methacrylate matrix ; *(ii)* the chemical modification of the matrix with allylamine and *(iii)* a thiol-ene reaction with either mercaptobutyric acid or 1-octane thiol.

1.3.1. Surface pre-treatment of the capillaries

In order to ensure the stability of the monolithic column, the inner wall of the capillaries was submitted to a vinylization step. 3-(Trimethoxysilyl)propyl methacrylate (γ -MAPS) was used as a bifunctional reagent allowing for the covalent attachment of the polymeric material onto the wall of the capillaries. The procedure was as follows: fused silica capillaries were treated with 1 M NaOH for 1h at room temperature and subsequently heated for 2 h at a temperature of 100 °C. Capillaries were flushed with 0.1 M HCl for 10 min, rinsed with deionized water for 10 min and then with acetone for 15 min. Thereafter, capillaries were purged with dry nitrogen gas for 2 h at a temperature of 120 °C. 30% (v/v) 3-(trimethoxysilyl)propyl methacrylate solution in toluene was allowed to react overnight with inner silanols at room temperature. Last, the capillaries were rinsed with toluene for 15 min and dried under a stream of nitrogen gas for 1 h. The capillaries thus treated were stored at 4 °C prior to use.

1.3.2. In situ synthesis of the porous monolith

In order to find the adequate mixture to realize further experiments, the porous monolith was prepared through a photochemically-driven free radical polymerization reaction. Different solutions were tested, consisting of variations of the following combination: GCMA as a functional monomer, EGDMA as a crosslinker, toluene and dodecanol (or nonane, depending of the samples) as porogenic solvents and AIBN as an initiator (4 mg, 1% w/w with respect to the total amount of monomers). Mixtures were sonicated for about 15 min to obtain homogeneous solution. The pre-treated capillary was completely filled with the polymerization mixture by immersing the inlet of the capillary into a reservoir and by pushing through the solution previously prepared under nitrogen pressure (3 bar). After flushing with a large excess of polymerization solution, both ends of the capillary were sealed with rubber septa and the capillary was placed within a Spectrolinker XL-1500 UV and irradiated under an overall intensity of 8 J.cm⁻² (800 s). After the polymerization was completed, the septa were removed and the monolith capillary was washed with ACN for 1 h (5 μ L.min⁻¹) to remove the unreacted monomers and the porogenic solvent. Subsequently, back pressure in the as-prepared capillaries was measured in order to determine their permeability.

1.3.3. In situ functionalization of the porous monolith with allylamine

The carbonate cycles stemming from the GCMA monomer were functionalized with alkene groups through nucleophilic substitution. The reaction was performed *in situ* by flushing the monolith capillary with a solution of allylamine (1 M = 160 μ L in 2 mL of ACN in a reservoir) pushed under nitrogen pressure (50 bars) during 2 h at room temperature. Thereafter, the monolithic capillary was washed with ACN for 1 h in order to remove the unreacted allylamine. The nucleophilic substitution yield was evaluated through *in-situ* Raman spectroscopy performed on monolithic capillary samples.

1.3.4. Thiol-ene reaction with thiol based molecules

The capillary was flushed by anhydrous absolute ethanol for 1 h to remove the previous solvent. Then, the surface-grafted alkene moieties provided the reactive sites for the modification by thiol-containing molecules (*e. g.* 4-mercaptobutyric acid or 1-octanethiol) *via* thiol-ene-based "click" chemistry. Photochemical thiol-ene reaction was proceeded as follows: mercaptobutyric acid (0.1M) or 1-octanethiol (1 M) and DMPA (4 mg, 1 wt%) were

dissolved in 2 mL of absolute ethanol. The solution was flushed into the capillary during 2 h under UV light ($\lambda = 365$ nm). Then the capillary was rinsed with pure absolute ethanol during 1 h to remove unreacted reagents. Conversion of double bonds was evaluated through *in situ* Raman spectroscopy performed on monolithic capillary samples.

1.4. In situ formation of platinum nanoparticles

The carboxyl-modified capillary was flushed first, with deionized water during 10 minutes, and then with a solution of 43 mg of K_2PtCl_4 into a 2 mL mixture of water during 30 min. it was then rinsed with H₂O during 10 minutes to remove the non-adsorbed platinum ions. Then a solution of 7 mg of NaBH₄ (0.1 M) in water was flushed during 1 h. Finally the capillary was washed 10 min deionized water.

1.5. Reduction of *p*-nitrophenol by heterogeneous catalysis

A freshly prepared solution containing 200 μ L of *p*-nitrophenol (5 mg in 10 mL of H₂O), 200 μ L of NaBH₄ (114 mg in 10 mL of water) in 5 mL of deionized water was injected in the loop (20 μ L, Rheodyne) of a HPLC pump system, the solution coming out from the in-capillary PtNPs decorated monoliths was collected and then analysed by UV-Vis spectrophotometry. To undoubtedly evidence the catalytic effect of PtNPs, blank tests were performed with monolithic microreactors without nanoparticles.

1.6. Reversed-Phase Separation of Hydrophobic Analytes by Capillary High Pressure Liquid Chromatography (nano-LC)

The capillary modified with 1-octanethiol was used in the resolution of 4 alkylbenzenes, namely toluene, *n*-propylbenzene, *n*-pentylbenzene and 1-phenylhexane. DMF was chosen as the unretained compound. The flowrate was fixed at 0.4 μ L.min⁻¹ and the mobile phase was constituted by a mixture of ACN/water (60/ 40 v/v). 10 nL of the analyte mixture was injected. In a second time, the mobile phase composition was modified so as to determine to clearly evidence the reversed-phase chromatographic mode by plotting the logarithm of

retention factor versus % amount of ACN ranging from 50 to 65 % (v/v) for each of the analytes.

Polymerization Mixture	% v/v toluene/DOHª	% v/v toluene/C₃H₂0	% w/w monomers/solvents	% w/w GCMA/EGDMA	B ₀ ^b (10 ⁻¹⁴ μm²)
1	75/25	-	36.2/33.8	34.4/65.6	4.31
2	-	50/50	36.2/63.8	34.4/65.6	0.89
3	40/60	-	39.2/60.8	34.4/65.6	1.83
4	100/0	100/0	36.2/63.8	34.4/65.7	12,21
5	0/100	-	36.2/63.8	34.4/65.8	а
6	50/50	-	36.2/63.9	34.4/65.9	3,56
7	25/75	-	36.2/63.10	34.4/65.10	а
8	60/40	-	36.2/63.11	34.4/65.11	5,23
9	-	0/100	36.2/63.12	34.4/65.12	а
10	40/60	-	36.2/63.13	34.4/65.13	а
11	40/60	-	44,2/55.8	34.4/65.14	1,08
12	40/60	-	49,8/50,2	34.4/65.15	1,78
13	40/60	-	39,2/60,8	25,1/74,9	11,60
14	40/60	-	39,2/60,8	43,8/56,2	16,74

Table S1. Composition of polymerization mixtures used for the preparation of in-capillary monoliths with the corresponding permeabilities.

Figure S1. *In-situ* EDX semi-quantitative analysis of monolithic GCMA-based capillary before (a) and after functionalization with allylamine (b) and subsequent thiol-ene addition of 1-octane thiol (c).